2016 ICSEE International Conference on the Science of Electrical Engineering - EILAT Israel

November 16 - 18, 2016
Hilton Queen of Sheba, Eilat, Israel
Preliminary Program
Dear Colleagues,

As part of the activities of the Israeli section of IEEE, we will be holding our 29th biennial convention in Eilat during November 16-18, 2016. This year we have changed the name of the conference to "The International Conference on the Science of Electrical Engineering" (ICSEE), in order to better reflect our commitment to contributing to and keeping abreast of the latest developments in the science and technology of electrical engineering.

The 2016 convention will feature over 220 presentations in a wide spectrum of disciplines such as signal processing, control theory, circuits and systems, energy, power electronics, computers, communications, antennas, and electro-optics. We therefore expect the convention to be conducive to the exchange of knowledge and ideas between different areas, thereby serving to advance each of the individual disciplines.

This year we are proud to introduce special full-day symposia that will complement the traditional sessions and will include longer and more detailed talks on specific subject areas. Many internationally renowned keynote and invited speakers will present their work and talk about their views on their respective branches of science. The three symposia that will take place this year will be on the topics of Speech and Audio Processing, Information Theory, and Control Theory and Power Engineering. In addition to the symposia, the conference will also feature several special sessions on a variety of topics, with the participation of key researchers from around the globe.

I would like to use this opportunity to express my deepest gratitude to the many individuals who have been contributing much of their time to the organization and planning of this convention. I am in particular indebted to Dr. Yuval Beck, the secretary of the IEEE Israel Section, Prof. Uri Erez, the program chair, and to the organizers of the symposia and special sessions. The conference would not have been possible without their dedication. I would also like to thank the authors, the session chairs, and all those who have invested efforts into ensuring the success of this convention.

Respectfully yours,

Prof. Mark Shtaif
Chair of the Israel IEEE Section
Abbreviations

SY - Symposium
SX - Special Session
SP - Signal Processing
IMP - Image Processing
COM - Communications
IT - Information Theory
POW - Power
COD - Coding
CP - Computers
OPD - Optical Devices
SCN - Systems and Control
Wednesday, November 16th 2016

<table>
<thead>
<tr>
<th>Time</th>
<th>Session/Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 – 17:00</td>
<td>Registration</td>
</tr>
<tr>
<td>17:00 – 19:00</td>
<td>Session 1</td>
</tr>
<tr>
<td></td>
<td>COM1</td>
</tr>
<tr>
<td></td>
<td>Routing and Scheduling</td>
</tr>
<tr>
<td></td>
<td>SCN1</td>
</tr>
<tr>
<td></td>
<td>Systems and control 1</td>
</tr>
<tr>
<td></td>
<td>CP</td>
</tr>
<tr>
<td></td>
<td>Computers</td>
</tr>
<tr>
<td></td>
<td>IT1</td>
</tr>
<tr>
<td></td>
<td>Information Theory</td>
</tr>
<tr>
<td></td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>POW1</td>
</tr>
<tr>
<td></td>
<td>Power Systems and Smart Grid</td>
</tr>
<tr>
<td></td>
<td>SX1</td>
</tr>
<tr>
<td></td>
<td>Special Session</td>
</tr>
<tr>
<td></td>
<td>Information Theoretical Applications to Industry</td>
</tr>
<tr>
<td>19:00 – 20:00</td>
<td>Dinner at the hotels</td>
</tr>
<tr>
<td>20:00 – 20:30</td>
<td>Opening Ceremony & Greetings</td>
</tr>
<tr>
<td>20:30 – 22:00</td>
<td>Poster session and cocktail</td>
</tr>
</tbody>
</table>
Thursday, November 17th 2016

Session 1
8:30 – 10:30

<table>
<thead>
<tr>
<th>8:30 – 10:30</th>
<th>SY1</th>
<th>SY2</th>
<th>SY3</th>
<th>COM2</th>
<th>COM3</th>
<th>IMP1</th>
<th>SP1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1</td>
<td>SY1</td>
<td>SY2</td>
<td>SY3</td>
<td>COM2</td>
<td>COM3</td>
<td>IMP1</td>
<td>SP1</td>
</tr>
<tr>
<td></td>
<td>Symposium on Control Theory and Power Engineering Part 1</td>
<td>Symposium on Information Theory</td>
<td>Symposium on Speech and Audio Processing</td>
<td>Optical communications</td>
<td>Communications general 1</td>
<td>Image Processing 1</td>
<td>Bio Applications</td>
</tr>
</tbody>
</table>

Session 2
11:00 – 13:00

<table>
<thead>
<tr>
<th>11:00 – 13:00</th>
<th>SY1</th>
<th>SY2</th>
<th>SY3</th>
<th>OPD</th>
<th>COM4</th>
<th>IMP 2</th>
<th>SCN2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SY1</td>
<td>SY2</td>
<td>SY3</td>
<td>OPD</td>
<td>COM4</td>
<td>IMP 2</td>
<td>SCN2</td>
</tr>
<tr>
<td></td>
<td>Symposium on Control Theory and Power Engineering Part 2</td>
<td>Symposium on Information Theory</td>
<td>Symposium on Speech and Audio Processing</td>
<td>Optical Devices</td>
<td>Communications general 2</td>
<td>Image Processing 2</td>
<td>Systems and control 2</td>
</tr>
</tbody>
</table>

Session 3
13:00 – 14:00

<table>
<thead>
<tr>
<th>13:00 – 14:00</th>
<th>SY1</th>
<th>SY2</th>
<th>SY3</th>
<th>POW2</th>
<th>SX2</th>
<th>ML1</th>
<th>SCN3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SY1</td>
<td>SY2</td>
<td>SY3</td>
<td>POW2</td>
<td>SX2</td>
<td>ML1</td>
<td>SCN3</td>
</tr>
<tr>
<td></td>
<td>Symposium on Control</td>
<td>Symposium on Control</td>
<td>Symposium on Control</td>
<td>Power systems 1</td>
<td>Special Session</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Session 4
14:00 – 16:00

<table>
<thead>
<tr>
<th>14:00 – 16:00</th>
<th>SY1</th>
<th>SY2</th>
<th>SY3</th>
<th>POW2</th>
<th>SX2</th>
<th>ML1</th>
<th>SCN3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SY1</td>
<td>SY2</td>
<td>SY3</td>
<td>POW2</td>
<td>SX2</td>
<td>ML1</td>
<td>SCN3</td>
</tr>
<tr>
<td></td>
<td>Symposium on Control</td>
<td>Symposium on Control</td>
<td>Symposium on Control</td>
<td>Power systems 1</td>
<td>Special Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00 – 16:20</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 16:20 – 18:20 | MNA
Microwaves and Antennas
SY2
Symposium on Information Theory
SY3
Symposium on Speech and Audio Processing
POW3
Power Conversion
SX2
Special Session
Advanced Topics in Nanoscaled Integrated Circuits and Systems 2
ML2
Machine Learning
SCN4
Systems and control 4 |
<table>
<thead>
<tr>
<th>Time</th>
<th>Session 1</th>
<th>Session 2</th>
<th>Lunch</th>
<th>Closing Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 – 10:30</td>
<td>SX3 Special Session Optical Communications</td>
<td>IT2 Information Theory 2</td>
<td>SX4 Special Session on Image Analysis and Processing</td>
<td>COD Coding</td>
</tr>
<tr>
<td></td>
<td>SX4 Special Session on Image Analysis and Processing</td>
<td>CIR1 Circuits and Devices</td>
<td>POW4 Power Electronics and Renewables</td>
<td>SP2 Signal Processing</td>
</tr>
<tr>
<td>10:30 – 11:00</td>
<td>Coffee Break</td>
<td>SX3 Special Session Optical Communications (cont.)</td>
<td>IT3 Information theoretic signal processing</td>
<td>SX5 Special Session Deep Learning</td>
</tr>
<tr>
<td>11:00 – 13:20</td>
<td>SX3 Special Session Optical Communications (cont.)</td>
<td>IT3 Information theoretic signal processing</td>
<td>SX4 Special Session on Image Analysis and Processing (cont.)</td>
<td>POW5 Power Electronics</td>
</tr>
<tr>
<td></td>
<td>SX3 Special Session Optical Communications (cont.)</td>
<td>IT3 Information theoretic signal processing</td>
<td>SX4 Special Session on Image Analysis and Processing (cont.)</td>
<td>POW5 Power Electronics</td>
</tr>
<tr>
<td>13:20 – 14:20</td>
<td>Lunch</td>
<td>SX3 Special Session Optical Communications (cont.)</td>
<td>IT3 Information theoretic signal processing</td>
<td>SX4 Special Session on Image Analysis and Processing (cont.)</td>
</tr>
<tr>
<td>14:20 – 15:00</td>
<td>Closing Session</td>
<td>SX3 Special Session Optical Communications (cont.)</td>
<td>IT3 Information theoretic signal processing</td>
<td>SX4 Special Session on Image Analysis and Processing (cont.)</td>
</tr>
</tbody>
</table>
Detailed Schedule of ICSEE Sessions

(For Symposia see pages 35 and further)
Wednesday, November 16th, 2016

Session 1: 17:00-19:00

COM1: Chair – Anatoly Khina - Caltech

Routing and Scheduling

17:00 – 17:20 **Routing Algorithms for Cognitive Networks – 42**
Itai Dabran and Danny Raz - Computer Science Department, Technion- Israel

17:20 – 17:40 **Performance Evaluation of CoMP Coordinated Scheduling over Different Backhaul Infrastructures: a Real Use Case Scenario – 191**
Andrea Marotta¹, Koteswararao Kondepud², Francesco Giannone², Swapna Doddikinda³, Dajana Cassioli¹, Cristian Antonelli¹, Luca Valcarenghi² and Piero Castoldi²— (1) University of L’Aquila- Italy (2) Scuola Superiore Sant’Anna (3) Tata Consultancy Services

17:40 – 18:00 **Optimal and Suboptimal Routing in Random Ad-hoc Networks Based on Local Knowledge – 195**
Yiftach Richter and Itsik Bergel - Bar- Ilan University- Israel

18:00 – 18:20 **Optimal control of VNF deployment and scheduling – 198**
Mark Shifrin- Ben Gurion University- Israel

SCN1: Chair – Emilia Fridman-Tel Aviv University

Systems and Control 1

17:00 – 17:20 **Least Mean Squares Error based Filter of Linear System with Prescribed Convergence Rate - 8**
Ilan Rusnak - Rafael- Israel

17:20 – 17:40 **Real-Time Implementation of Simple Adaptive Control Algorithm to Two Axes Gimbal - 10**
Ilan Rusnak, Ohad Hertz, and Yotam Dana - Rafael- Israel

17:40 – 18:00 **State-Multiplicative Noisy Systems – H Infinity Measurement-feedback Tracking with Preview - 155**
Eli Gershon¹ and Uri Shaked²— (1) Holon Institute of Technology- Israel (2) Tel-Aviv University- Israel

18:00 – 18:20 **A One Step Stochastic Pursuer--Evader Game- 197**
Gyorgy Hexner, Ilan Rusnak and Haim Weiss- Rafael- Israel
CP: Chair - Yitzhak Birk - Technion

Computers
17:00 – 17:20 If It Spreads You Can Catch It: Localized Epidemic Detection with Overwhelming Noise – 49
Eli Meirom¹, Constantine Caramanis², Shie Manor¹, Sanjay Shakkottai² and Ariel Orda¹- (1) Technion-Israel (2) University of Texas at Austin- USA
17:20 – 17:40 Mending the Big-Data Missing Information – 146
Hadassa Daltrophe, Shlomi Dolev and Zvi Lotker- Ben- Gurion University- Israel
17:40 – 18:00 Memristive Memory Processing Unit (MPU) Controller for In-Memory Processing - 119
Rotem Ben-Hur and Shahar Kvatinsky - Technion-Israel
18:00 – 18:20 SDSM: Fast and Scalable Security Support for Directory-Based Distributed Shared Memory -20
Ofir Shwartz and Yitzhak Birk- Technion-Israel
18:20 – 18:40 Storage Becomes First Class Memory - 71
Netanel Katzburg¹, Amit Golander² and Shlomo Weiss¹- (1) Tel-Aviv University- Israel (2) Plexistor- Israel

IT1: Chair - Ram Zamir - Tel Aviv University

Information Theory 1
17:00 – 17:20 The Gaussian state-dependent channel with rate-limited decoder state-information – 18
Shraga Bross¹ and Amos Lapidoth²- (1) Bar-Ilan University- Israel (2) ETH- Switzerland
17:20 – 17:40 Semi-deterministic relay channels with non-causal states only at the transmitter and receiver- 162
Ido Gattegno¹, Haim H. Permuter¹, Shlomo Shamai² and Ayfer Ozgur³- (1) Ben- Gurion University- Israel (2) Technion – Israel (3) Stanford- USA
17:40 – 18:00 On the Capacity of the Gaussian Broadcast Channel with States Known at the Transmitter – 46
Leila Ghabeli and Stefano Rini- National Chiao Tung University- Taiwan
18:00 – 18:20 The Gaussian Wiretap Channel with Correlated Sources at the Terminals: Secret Communication and Key Generation – 22
Alexander Bunin¹, Pablo Piantanida² and Shlomo Shamai¹- (1) Technion- Israel (2) CentraleSupélec-CNRS-Université Paris-Sud- France
18:20 – 18:40 Oblivious Processing in a Fronthaul Constrained Gaussian Channel - 25
Adi Homri, Michael Peleg and Shlomo Shamai – Technion-Israel
18:40 – 19:00 On the Capacity of the Carbon Copying onto Dirty Paper Channel – 33
Stefano Rini and Shlomo Shamai- (1) National Chiao Tung University- Taiwan (2) Technion- Israel
17:00 – 17:20 Observable Canonical Forms of Multi-Machine Power Systems using dq0 Signals – 9
Yoash Levron and Juri Belikov- Technion - Israel

17:20 – 17:40 Electricity cost minimization in cooling systems with storage – 11
Eyal Solomon Shimony- Ben-Gurion University- Israel

17:40 – 18:00 Three-Phase State Estimation Model for Distribution Grids - 141
Pavel Chusovitin, Ilya Polyakov and Andrey Pazderin- Ural Energy Institute of Ural Federal University- Russia

18:00 – 18:20 Estimation PSS Tuning Quality Based on Low-Frequency Oscillation Damping - 177
Valeriy Tashchilin, Pavel Chusovitin, Andrey Pazderin and Rinat Idrisov- Ural Energy Institute of Ural Federal University- Russia

18:20 – 18:40 Fragility of the Semidefinite Relaxation for the Optimal Power Flow Problem - 184
Ivan Zorin, Sergey Vasilyev and Elena Gryazina- (1) National Research University "Higher School of Economics"- Russia (2) Institute for Control Sciences RAS, Skoltech, Center for Energy Systems - Russia

18:40 – 19:00 A warning about the use of reduced models of synchronous generators - 81
Elad Venezian and George Weiss- Tel-Aviv University- Israel
SX1: Chairs – Irad Ben-Gal¹ and Eugene Kagan² - (1) Ariel University (2) Tel Aviv University

Information theoretical applications to industry

17:00 – 17:20 Subspace Selection for Anomaly Detection: An Information Theory Approach – 16
Marcelo Bacher, Irad Ben-Gal and Erez Shmueli - Tel-Aviv University - Israel

Shraga Shoval - Ariel University Isreal

17:40 – 18:00 Sonar-based Flocking in the Robot’s Team with Radio Communication – 129
Eugene Kagan¹, Mor Kaizer¹, Sharon Makmal¹ and Irad Ben-Gal² - (1) Ariel University – Israel (2) Tel-Avivi University - Israel

18:00 – 18:20 Uninorm-based Neural Network and its Application for Control of Mobile Robots – 128
Eugene Kagan¹, Alexander Rybalov² and Hodaya Ziv¹ - (1) Ariel University- Israel (2) Machine Learning Institute, New York

18:20 – 18:40 Why Spending More Might Get You Less, Dynamic Selection of Influencers in Social Networks – 161
Alon Sela, Erez Shmueli, Dima Goldenberg and Irad Ben-Gal - Tel-Aviv University - Israel
Wednesday, November 16th, 2016

Poster Session: 20:30-22:00

- Law and Technology – 233
 Dov Greenbaum- Zvi Meltar Institute for Legal Implications of Emerging Technologies- Israel
- Comparing Passive and Active Biasing Networks for a Photomultiplier Tube Sensor using SPICE – 72
 Natan Krihely- Applied Materials- Israel
- Enrich the Data Density of Cluster for Imbalanced Learning Using Immune Representatives – 5
 Xusheng Ai1, Jian Wu1, Zhiming Cui2, Xuefeng Xian3 and Yufeng Yao1- (1) Soochow University (2) Suzhou University of Science and Technology (3) Suzhu Vocational University
- On the Real-Time Power Sharing Problem – 7
 Ido Avraham, Leonid Mirkin and Yoash Levron- Technion-Israel
- A Matlab-Simulink Model of Network Reactive Power Compensation Based on Binary Switchable Capacitors and Thyristor-Controlled Reactor – 34
 Yuval Beck1, Yefim Berkovich1, Zdenek Muller2 and Josef Tlustý2- (1) Holon Institute of Technology- Israel (2) CTU in Prague- Czech Republic
- Speaker Diarization Based on Locally Linear Embedding – 55
 Ori Shahar, Lee Twito, Nurit Spingarn and Israel Cohen- Technion- Israel
- Voiced-Unvoiced-Silence Classification via Hierarchical Dual Geometry Analysis – 75
 Maya Harel, David Dov, Israel Cohen, Ronen Talmon and Ron Meir- Technion- Israel
- Traveling Wave Ring Oscillator – a New Architecture of Transmission Line Based Oscillator – 121
 Boris Likhterov and Belenky Alexander- Ben- Gurion University- Israel
- Analog Filter Realization for Human - Machine Interaction in Aerospace – 151
 Jan Boril, Karel Zaplatilek and Rudolf Jalovecky- Univeristy of Defence, Faculty of Military Technology- Czech Republic
- Digital predistortion using piecewise memory polynomial for 802.11 WiFi applications – 165
 Tomer Gidoni1, Emanuel Cohen2 and Eran Socher1- (1) Tel-Aviv University- Israel (2) Technion- Israel
- Wideband Demodulator for Optical Waveforms – 168
 Omri Lev, Tal Wiener, Deborah Cohen and Yonina C. Eldar- Technion- Israel
- Autonomous Robot for Tunnel Mapping – 199
 Tom Erez and Aviv Rubinstein- Technion- Israel
- Distorting Regimes and Their Measurement Systems for The Diagnosis Purposes in Three-Phase Systems – 205
 Petre-Marian Nicolae, Ileana-Diana Nicolae and Marian-Stefan Nicolae- University of Craiova- Romania
- Optimal encoding and decoding for point process observations of dynamic processes—a closed-form approximation – 208
 Yuval Harel1, Ron Meir1 and Manfred Opper2- (1) Technion- Israel (2) Technical University Berlin- Germany
- Adaptive Weighting Parameter in Audio-Visual Voice Activity Detection – 212
 Matar Buchbinder, Yaakov Buchris and Israel Cohen- Technion- Israel
- Control Room Anywhere - By DSW – 116
 Dvir Tvizer and Adi Babayof- ICL- Israel
• Shannon's definition of information is obsolete and of limited use. Kolmogorov's insights are more suitable for our challenges - 41
 Emanuel Diamant - VIDIA - Revenge - Israel
• Star Tracker for Mobile Applications - 148
 Revital Marbel, Boaz Ben Moshe and Roi Yozevitch - Ariel University - Israel
• Automation and Speed-Up of the RSC N-FINDR Algorithm for Endmember Extraction - 12
 Alex Jivin and Stanley Rotman - Ben-Gurion University - Israel
• Experimental Verification of Internal Resistance and Capacitance of CPQ2300S Li-Ion Ultracapacitors - 21
 Asher Yahalom, Vitaly Prikhodko, Yair Dahan and Moshe Averbukh - Ariel University - Israel
• Infrared Spectroscopy and Multivariate Analysis: Classification of Mixed Fusarium Species Solani and Oxysporum Isolates at the Species Level - 28
 Ahmad Salman1, Elad Shufan1, Itshak Lapidot2, Leah Tsrour3, Shaul Mordechai4, Uraib Sharaha4 and Mahmoud Huleihel4 - (1) Shamoon College of Engineering (2) Afeka Tel-Aviv Academic College of Engineering (3) The Institute of Plant Protection, Agricultural Research Organization, Gilat Experiment Station (4) Ben-Gurion University
• Design of an Implanted Antenna Inside the Human Body for a Pacemaker Application - 54
 Neria Shimonov1, Vladimir Vulfin2, Shai Sayfan-Altman3 and Reuven Ianconescu4 – (1) SCE - Israel (2) Ben-Gurion University - Israel (3) ANSYS - Israel (4) Shenkar College of Engineering and Design
• Coding Performance of Non-Interleaved Non-Memoryless Optical Wireless Channels - 57
 Dima Bykhovsky, Dor Cohen and Dor Benafsha - Shamoon College of Engineering - Israel
• Investigation of a Multi-Horn Antenna - 93
 Haim Matzner1, Yarom Levy2, Moshe Raminfar2 and Ely Levine3- (1) Holon Institute of Technology - Israel (2) Azriley college of Engineering - Israel (3) Afeka college of Engineering - Israel
• A Balanced, Series-Fed Microstrip Array Antenna with Low Sidelobes - 94
 Liron Bezalel1, Aviad Frenkel1, Ely Levine2 and Haim Matzner1- (1) Holon Institute of Technology - Israel (2) Afeka college of Engineering - Israel
• Unsupervised Detection of Available Parking Spots - 99
 Yonatan Urman, Tamir Baruch Yampolsky and Rami Cohen - Technion - Israel
• An Ultra Wideband Antenna for Cyber Applications - 100
 Elya Shmelkin1, Ely Levine1 and Haim Matzner2 - (1) Afeka college of Engineering - Israel (2) Holon Institute of Technology - Israel
• Resonant LCC DC-DC Converter with Boundary Control - 107
 Yoram Horen and Svetlana Bronshtein - SCE - Israel
• Single to Three Phase Conversion for Rural Power Applications - 108
Svetlana Bronshtein¹, Alexander Bronshtein² and Boris Epshtein¹ - (1) SCE- Israel
(2) ELTA - Israel

• Texture Segmentation for Seam Carving- 110
 Gilor Raz, Ron Shmueli and Eyal Katz- Afeka college of Engineering- Israel

• Detection of Distress in Speech- 120
 Yehav Alkaher, Osher Dahan and Yair Moshe- Technion -Israel

• A Mixed-signal circuit for boosting the supply of RF Power Amplifiers in High Peak to Average Power Ratio Applications - 139
 David L. Fleischerc – ADSR- Israel

• Cry-based Detection of Developmental Disorders in Infants- 154
 Amit Oren¹, Avi Matzliach¹, Rami Cohen¹ and Hagit Friedman²- (1) Technion –Israel
 (2) Kinneret Academic College on the Sea of Galilee- Israel

• Delivery of QR Codes to Cellular Phones through Data Embedding in Audio- 159
 Itai Dagan, Gal Binyamin and Alon Eilam- Technion –Israel

• Complex Data Acquisition System for The Monitoring and Diagnosis Used in Energetic- 170
 Petre-Marian Nicolae, Ileana-Diana Nicolae and Marian-Stefan Nicolae- University of Craiova- Romania

• A Dynamic Load Balancing Architecture for SDN - 190
 Hadar Sufiev and Yoram Haddad- Jerusalem College of Technology- Israel

• On chirp excitation and compression for ultrasound imaging- 192
 Dorin Danial, Moshe Porat and Zvi Friedman – (1) Technion – Israel (2) GE Healthcare- Israel

• Baby cry detection in domestic environment - 206
 Yizhar Lavner¹, Rami Cohen², Dima Ruinskiy³ and Hans Ijzerman⁴- (1)Tel-Hai Academic College- Israel (2) Technion- Israel (3) Intel- Israel (4) Vrije Universiteit- Netherlands

• Diagnosis of Parkinson’s Disease from Continuous Speech using Deep Convolution Networks without Manual Selection of Features- 207
 Alex Frid¹, Ariel Kantor², Dimitri Svechin² and Larry M. Manevitz¹-(1) University of Haifa- Israel (2) ORT Braude College of Engineering

• Deficiencies in spraying techniques for key exchange in MANETs- 221
 Ariel Stulman- Jerusalem College of Technology- Israel

• Off-road Path and Obstacle Detection using Monocular Camera - 226
 Idan Nadav and Eyal Katz- Afeka college of Engineering- Israel

• Multi-Channel Fusion for Seismic Event Detection and Classification- 175
 Ofir Lindenbaum¹, Neta Rabin², Yuri Bergman³ and Amir Averbuch¹- (1) Tel-Aviv University- Israel (2) Afeka college of Engineering- Israel (3) Soreq Nuclear Research Center- Israel

• Selective GMM EM for Telephone Diarization- 13
 Tal Levy¹ and Itshak Lapidot²- (1) Opera Solutions – USA (2) Afeka college of Engineering- Israel

• Real Time Fault Location in High Voltage Network Power Lines- 137
Michael Sulymanov, Asher Yahalom and Yosef Pinhasi- Ariel University- Israel

- Dimensionless Nomogram Approach in the Courses of Power Electronics and Electrical Drives- 179
 Moshe Averbukh- Ariel University- Israel

- Duality Principle Approach to Multilevel Three-Phase Current Source Converter Pulse-Width Modulation- 224
 Kfir J. Dagan- Ben-Gurion University- Israel
Thursday, November 17th, 2016

Session 1: 8:30-10:30

COM2: Chair – Mark Shtaif – Tel-Aviv University
Optical Communication

8:30 - 8:50 Shaping the input in nonlinear fiber systems for mitigation of inter-channel nonlinear phase-noise – 31
Omri Geller¹, Ronen Dar², Meir Feder¹ and Mark Shtaif¹- (1) Tel-Aviv University – Israel (2) Bell Laboratories- USA

8:50 - 9:10 Induced mode mixing in SDM networks for reduced computation complexity – 211
Miri Blau and Dan M. Marom- Hebrew University- Israel

9:10 - 9:30 Wavelength demultiplexing operating over mode division multiplexed signals on ribbon fiber – 209
Miri Blau and Dan M. Marom- Hebrew University- Israel

Roi Rath, Dennis Clausen Clausen and Werner Rosenkranz Rosenkranz- University of Kiel- Germany

9:50 - 10:10 A Novel Low Resolution ADC-DSP Optimization Based on Non-Uniform Quantization and MLSE for PAM-4 Data Centers Optical Connections – 30
Yaron Yoffe and Dan Sadot- Ben-Gurion University- Israel

10:10 - 10:30 Predistortion of Mach-Zehnder Modulator using Symmetric Imbalance – 174
Gil Paryanti and Dan Sadot- Ben-Gurion University- Israel

COM3: Chair – Tsvi Dvorkind- Rafael
Communications 1

8:30 - 8:50 Power allocation for covert communication, with application to underwater acoustic channel – 56
Tsvi G. Dvorkind- RAFAEL- Israel

8:50 - 9:10 Secure communication systems based on chaotic synchronization of time-delayed feedback oscillators – 147
Mikhail Prokhorov, Vladimir Ponomarenko and Danil Kulminskiy- Institute of Radio Engineering and Electronics- Russia

9:10 - 9:30 Improved GNSS Velocity Estimation using Sensor Fusion – 149
Roman Morer, Shlomi Hacohen, Boaz Ben Moshe, Nir Shvalb and Roi Yozevitch- Ariel University- Israel

9:30 - 9:50 Composite Measurement From Asynchronous LOS and Unknown Sensor Position – 64
Itzik Klein¹, Yeshaya Lipman¹ and Yaakov Bar-Shalom²- (1) RAFAEL-Israel (2) University of Connecticut- USA

9:50 - 10:10 VISION: Video-oriented UWB-based Intelligent Ubiquitous Sensing- 189
IMP1: Chair TBA

Image Processing 1
8:30 - 8:50 Navigation Using Image Tracking - 123
Stephen Stubberud¹, Kathleen Kramer² and Allen Stubberud³- (1)
Oakridge Technology- USA (2) University of San Diego- USA (3)
University of California Irvine- USA

8:50 - 09:10 Point Cloud Registration Using A Viewpoint Dictionary - 58
David Avidar, David Malah and Meir Barzohar- Technion- Israel

09:10 - 09:30 Performance Boosting of a Pedestrian Detector using Multiple Cameras - 77
Oded Yechiel, Assaf Livne, Rami R. Hagege and Hugo Guterman- Ben-Gurion University- Israel

9:30 - 9:50 Using Improved Outlier Estimation for Hyperspectral Target Detection - 86
Sagiv Dvash and Stanley Rotman- Ben-Gurion University- Israel

9:50 - 10:10 Frame Rate Reduction of Depth Cameras by RGB-Based Depth Prediction – 38
Daniel Rotman, Omer Cohen and Guy Gilboa- Technion- Israel

10:10 - 10:30 Natural Contrast Enhancement for Dichromats using Similarity Maps- 73
Guy Tennenholtz and Ido Zachevsky- Technion- Israel

SP1: Chair, Yiftach Richter – Bar Ilan University

Signal Processing 1: Bio Applications
8:30 - 8:50 Alternating Diffusion Maps for Dementia Severity Assessment – 98
Maya Rapaport, Noga Cohen, Tal Shnitzer, Natalya Yarovinsky, Ronen Talmon and Judith Aharon-Peretz- Technion- Israel

8:50 - 09:10 Characterization and Simulation of Atrial Arrhythmogenic Sources Using Induced Spatial Temperature Variations – 152
Guy Malki and Sharon Zlochiver- Tel-Aviv University- Israel

09:10 - 09:30 In-Vivo Energy Harvesting Nano Robots - 194
Shlomi Dolev¹, Sergey Frenkel², Michael Rosenblit¹, Ram Prasad Narayanan¹ and Muni Venketeswarlu K¹ – (1) Ben-Gurion University- Israel (2) Russian Academy of Sciences - Russia

9:30 - 9:50 Enhancement Of BCI Classifiers Through Domain Adaptation - 167
Hadas Benisty, Daniel Furman, Talor Abramovich, Amir Ivry and Hillel Pratt- Technion- Israel
Thursday, November 17th, 2016

Session 2: 11:00-13:00

OPD: Chair – Dan Marom- Hebrew University

Optical Devices:

11:00 – 11:20 **ANALYTICAL APPROXIMATION FOR PHOTONIC ARRAY MODES IN 2D PHOTONIC DEVICES – 47**
Lidor Giladi¹, Elena Smith², Vladislav Shteeman³ and Amos Hardy²-
(1) IDF- Israel (2) Tel-Aviv University- Israel (3) Braude College of Engineering - Israel

11:20 – 11:40 **Slot Silicon-Gallium Nitride Waveguide Realizing 1x4 Optical Power Splitter - 136**
Dror Malka, Yossef Danan and Zeev Zalevsky- (1) Holon Institute of Technology – Israel (2) Bar-Ilan University- Israel

11:40 – 12:00 **ANALYSIS OF OPTICAL CHARACTERISTICS OF HOLEY PHOTONIC CRYSTALS WITH EXTENDED COUPLED-MODE FORMALISM -79**
Lidor Giladi¹, Elena Smith², Vladislav Shteeman² and Amos Hardy¹-
(1) Tel-Aviv University- Israel (2) Braude College of Engineering- Israel

12:00 – 12:20 **Printable Grating Patterns of PDMS by Dip-Pen Nanolithography - 59**
Zeev Fradkin, Dima Bykhovsky, Moshe Zohar, Almog Azulay and Saad Tapuchi- Shamoon College of Engineering- Israel

12:20 – 12:40 **Nonlinear Waveguide with CdSe &PFCB nanocomposite core - 216**
Moran Bin Nun, Yedidya Lior and Dan Marom – Hebrew University- Israel

12:40 – 13:00 **Dual FSR Silicon Racetrack Resonator Based on Double Injection – 234**
Roei Aviram Cohen, Ofer Amrani and Shlomo Ruschin- Tel-Aviv University - Israel

COM4: Chair: Arie Reichman- Ariel University

Communications 2

11:00 – 11:20 **On Digital Post-Distortion Techniques– 60**
Ziv Alina and Ofer Amrani- Tel-Aviv University- Israel

S.M. Zafaruddin, Udi Klein, Itsik Bergel and Amir Leshem- Bar-Ilan University- Israel

11:40 – 12:00 **Optimization of OFDM System with Nonlinear Power Amplifier and Modified Iterative Receiver- 87**
Noam Davidovitz, Ilia Iofedov and Dov Wulich - Ben-Gurion University- Israel

12:00 – 12:20 **Energy Efficient Bidirectional Massive MIMO Relay Beamforming-193**
Michal Yemini¹, Alessio Zappone², Eduard Jorswieck³ and Amir Leshem¹-
(1) Bar-Ilan University- Israel (2) University of Cassino and Southern Lazio-Italy (3) Communications Laboratory TU Dresden- Germany

12:20 – 12:40 **Rate Analysis of Distributed Multiuser MIMO Protocols for the 802.11ac-183**
Joseph Kampeas, Asaf Cohen and Omer Gurewitz- Ben-Gurion University- Israel

12:40 – 13:00 Coexistence Mechanisms in Ultra-Wideband Body Area Network-124
Natan Keren and Arie Reichman- Ariel University- Israel

IMP2: Chair -- Emanuele Rodolà - Universita’ della Svizzera Italiana
Image Processing 2

11:00 – 11:20 Eye movements as a marker for visual prosthesis spatial mapping – 204
Avi Caspi1, Jessy Dorn2, John Helder3, Kapil Katyal3 and Arup Roy2- (1) Jerusalem College of Technology- Israel (2) Second Sight Medical Products, Inc.- USA (3) The Johns Hopkins University Applied Physics Laboratory- USA

11:20 – 11:40 Gaussian Mixture Diffusion – 61
Jeremias Sulam, Yaniv Romano and Michael Elad - Technion- Israel

11:40 – 12:00 Exploiting Spatial Phase in Deconvolution of Structured Stochastic Textures – 134
Ido Zachevsky and Yehoshua Zeevi - Technion- Israel

12:00 – 12:20 Improved Covariance Matrix for Target Detection in Hyperspectral Imaging – 235
Ilan Schwartzman, Shimrit Maman, Dan G. Blumberg and Stanley R. Rotman- Ben-Gurion University- Israel

12:20 – 12:40 A total variation scale-space and image resizing- 144
Yedidya Hyams and Moshe Porat - Technion- Israel

SCN2: Chair – Eli Gershon- Holon Institute of Technology
Systems and Control 2

11:00 – 11:20 Comparison of JML, EKF and SDDRE Filters of Nonlinear Dynamic Systems – 51
Ilan Rusnak - RAFAEL-Israel

11:20 – 11:40 Multi-Rate Control over AWGN Channels via Analog Coding – 97
Anatoly Khina, Babak Hassibi and Victoria Kostina- California Institute of Technology- USA

11:40 – 12:00 Analysis of Feedback Networks with Multiple Dependent Sources by Superposition – 112
Pavel Shanin1 and Liron Allerhand2- (1) Intel- Israel (2) Tel-Aviv University- Israel

12:00 – 12:20 Regulation of Discrete Event Dynamic Systems via an Adjustable-Gain Integrator – 181
Yorai Wardi1 and Carla Seatzu2- (1) Georgia Tech- USA (2) University of Cagliari- Italy

Liron Allerhand and Dieter Schwarzmann- IAV GmbH- Germany

12:40 – 13:00 Analytic Steady-State Solution of Fine Alignment with Velocity Measurements – 84
Alexander Tsukerman and Itzik Klein - Technion- Israel
Thursday, November 17th, 2016

Session 3: 14:00-16:00

POW2: Chair Doron Shmilovitz- Tel-Aviv University
Power Systems
Sponsored by: solar edge

14:00 – 14:20 Performance Analysis of Empirical Fourier Transform based Power Transformer Differential Protection – 36
Sishaj P Simon¹, Senthil Kumar Murugan¹, Sundareswaran K¹ and C Christopher Columbus²- (1) National Institute of Technology Tiruchirappalli- India (2) PSN College of Engineering and Technology, Tirunelveli- India

14:20 – 14:40 Voltage stability analysis using quadratic objective function taking into account equality constraints – 53
Grigory Shabalov, Pavel Chusovitin, Andrei Pazderin and Eduard Balakh- UrFU- Russia

14:40 – 15:00 An alternative approach about fault location on AC and DC cables during commissioning and operation – 96
Kay Leiteritz¹, Bruno Fainaru² and Frank Böhme¹- (1) HIGHVOLT Prüftechnik Dresden GmbH- Germany (2) Consultant- Israel

15:00 – 15:20 Novel Method of Optimisation of Losses in Power Grid – 117
Zdenek Muller¹, Josef Tlustý¹, Miroslav Muller¹, Yuval Beck², Martin Cernan and Gady Golan³- (1) CTU in Prague- Czech Republic (2) Holon Institute of Technology- Israel (3) HIT and Ariel University- Israel

15:20 – 15:40 The algorithms behind development of operational benefits for smart grid in Israel –230
Netzah Calamaro¹, Doron Shmilovitz² and Yuval Beck³ – (1) Tel-Aviv University- Israel (2) Holon Institute of Technology- Israel

SX2: Advanced Topics in Nanoscaled Integrated Circuits and Systems 1
Chairs: Alex Fish and Adam Teman

14:00 – 14:20 A new Selective State Retention Power Gating approach for low power VLSI design - 361
Dr. Shlomo Greenberg- Ben-Gurion University- Israel

14:20 – 14:40 FPGA Design of Numerical Methods for the Robotic Motion Control Task exploiting High-Level Synthesis-156
Prof. Michael Huebner- Ruhr Universität Bochum- Germany

14:40 – 15:00 Ultra low-voltage SRAM design in 28nm FD-SOI- 363
Prof. Joachim Rodrigues- Lund University- Sweden

15:00 – 15:20 Sub-pj per Operation Scalable Computing – the PULP experience- 364
ML1: Chair TBA
Machine Learning & Image Processing
14:00 – 14:20 Visual Reinforcement Learning for Object Recognition in Robotics – 35
Dan Malowany and Hugo Guterman - Ben-Gurion University - Israel
14:20 – 14:40 Light Invariant Video Camera - Making Faces Appear the Same Under any Light Conditions – 163
Amir Kolaman, Rami Hagege and Hugo Guterman - Ben-Gurion University - Israel
14:40 – 15:00 Automated Supervised Segmentation of Anatomical Fiber Tracts Using an AdaBoost Framework – 132
Michal Heker, Rula Amer, Guy Alexandroni and Hayit Greenspan - Tel-Aviv University - Israel
15:00 – 15:20 Graph-Constrained Supervised Dictionary Learning for Multi-Label Classification – 143
Yael Yankelevsky and Michael Elad - Technion - Israel
Yehuda Dar¹, Alfred M. Bruckstein¹, Michael Elad¹ and Raja Giryes²-
(1) Technion (2) Tel-Aviv University - Israel

SCN3: Chair – Hugo Guterman - Ben-Gurion University
Systems and Control 3
14:00 – 14:20 Stability of the SDDRE based Estimator for Stochastic Nonlinear Systems – 2
Ilan Rusnak - RAFAEL - Israel
14:20 – 14:40 Guidance Law against Spiraling Target: Constant Velocity Amplitude – 3
Ilan Rusnak and Liat Peled-Eitan - RAFAEL - Israel
14:40 – 15:00 RobIL – Israeli Program for research and development of Autonomous UGV: performance evaluation methodology – 43
Daniel Meltz and Hugo Guterman - Ben-Gurion University - Israel
15:00 – 15:20 Optimal pursuit and rendezvous guidance with obstacle avoidance – 70
Martin Weiss and Tal Shima - Technion - Israel
15:20 – 15:40 GNSS Denial of Service and the Preparation for Tomorrows Threats – 164
Nir Flysher, Roi Yozevitch and Boaz Ben Moshe - Ariel University - Israel
15:40 – 16:00 Automatic Parking Identification and Vehicle Guidance with Road Awareness – 228
Guy Krasner and Eyal Katz - Afeka College of Engineering - Israel
Thursday, November 17th, 2016

Session 4: 16:20-18:20

MNA: Chair – Shmuel Auster - Elta

Microwave and Antennas

16:20 - 16:40 Relativistic Lateral wave – 45
Timor Melamed and Tatiana Danov- Ben-Gurion University- Israel

16:40 - 17:00 Simulation and theory of TEM transmission lines radiation losses – 52
Reuven Ianconescu¹ and Vladimir Vulfin¹- (1) Shenkar College of Engineering and Design – Israel (2) Ben-Gurion University- Israel

17:00 – 17:20 Quantum Entanglement in Electric Circuits: from Anomalous Crosstalk to Electromagnetic Compatibility in Nano-Electronics – 63
Gregory Slepyan¹, Amir Boag¹, Vladimir Mordachev², Eugene Sinkevich², Sergey Maksimenko², Polina Kuzhir², Giovanni Miano³, Misha Portnov⁴ and Antonio Maffucci⁵- (1) Tel-Aviv University- Israel (2) Belarus State University of Informatics and Radioelectronics- Belarus (3) University of Naples Federico II- Italy (4) University of Exeter- United Kingdom (5) University of Cassino- Italy

17:20 – 17:40 Analytical model for absorption by lossy finite-length dipole antennas – 66
Ofer Markish and Yehuda Leviatan- Technion- Israel

17:40 – 18:00 Sectorial Antenna Based on Vertical Microstrip Elements – 95
Ynon Gabbai¹, Ely Levine² and Haim Matzner¹- (1) Holon Institute of Technology- Israel (2) Afeka College of Engineering- Israel

18:00 – 18:20 Design of Reflectarray Antenna Based on Fresnel Zone Plates with AMC Structure–102
Sason Dan¹, Vladimir Vulfin² and Reuven Shavit²- (1) Shamoon College of Engineering- Israel (2) Ben-Gurion University- Israel

18:20 – 18:40 Long Distance Wireless Power Feeding to High-altitude Platforms- 153
Motti Haridim¹, Jacob Gavan¹, Boris Kalendarov¹ and Tchanguiz Razban²- (1) Holon Institute of Technology- Isreal (2) University of nantes- France

POW3: Chair : Alon Kuperman- Ben-Gurion University

Power conversion

Sponsored by: solaredge

16:20 - 16:40 Control of a virtual infinite capacitor used to stabilize the output voltage of a PFC – 48
Shuyue Lin¹, Jun Lin², George Weiss² and Xiaowei Zhao¹- (1)University of Warwick- United Kingdom (2) Tel Aviv University- Israel
16:40 - 17:00 Infinite Virtual Capacitor Realization for Grid-Connected Power Converters – 85
Martin Mellincovsky¹, Vladimir Yuhimenko², Mor Mordechai Pertz¹ and Alon Kuperman¹- (1) Ben-Gurion University- Israel (2) Ariel University- Israel

17:00 – 17:20 The Virtual Infinite Capacitor-Based Active Submodule for MMC – 109
Jun Lin and George Weiss- Tel-Aviv University- Israel

Gal Barzilai, Lior Marcus and George Weiss- Tel-Aviv University- Israel

SX2: Advanced Topics in Nanoscaled Integrated Circuits and Systems 2
Chairs: Alex Fish and Adam Teman

16:20 - 16:40 Effect of metal buffer layer and thermal annealing on HfOx-based ReRAMs-188
Prof. Yusuf Leblebici - EPFL

16:40 - 17:00 Benefits of asynchronous control for analog electronics: a case study for multiphase buck-367
Dr. Danil Sokolov - Newcastle University - United Kingdom

17:00 – 17:20 Programmable Output Multi-phase Switched Capacitor Step-up DC-DC Converter with SAR-based Regulation
Prof. Subhajit Sen - IIIT Bangalore

17:20 – 17:40 Memristor-based circuits and architectures
Prof. Shahar Kvatinsky - Technion- Israel

17:40 – 18:00 Ultra low area, 10 bit, First Order Sigma Delta Modulator with improved PSRR
Prof. Joseph Shor - Bar-Ilan University – Israel

18:00 – 18:20 Self-timed control of two-phase Switched Capacitor Converters
Serhii Mileiko - Newcastle University- United Kingdom

ML2: Chair – Ofir Lindenbaum – Tel Aviv University
Machine Learning

16:20 - 16:40 Multi-View Kernel-based Data Analysis – 78
Moshe Salhov¹, Amir Averbuch¹, Ofir Lindenbaum¹, Yoel Shkolnisky¹ and Avi Silberschatz²- (1) Tel-Aviv University- Israel (2) Yale University- USA

16:40 - 17:00 Bandwidth Selection for Kernel Based Classification – 176
Ofir Lindenbaum, Arie Yeredor and Amir Averbuch- Tel-Aviv University- Israel

17:00 – 17:20 Improvements to PLDA i-vector Scoring for Short Segments – 196
Itay Salmun, Irit Opher and Itshak Lapidot- Afeka Tel-Aviv Academic College of Engineering-Israel

Alon Hazan, Yuval Harel and Ron Meir- Technion-Israel

17:40 – 18:00 ACK Utilization for Traffic Classification – 225
Joseph Kampeas, Asaf Cohen and Omer Gurewitz- Ben-Gurion University- Israel
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:20 - 16:40</td>
<td>Predictor-based dynamic output stabilization of networked systems with large time-varying delays</td>
<td>Anton Selivanov and Emilia Fridman- Tel-Aviv University- Israel</td>
</tr>
<tr>
<td>16:40 - 17:00</td>
<td>The regulation problem for the one-dimensional Schrödinger equation via the backstepping approach</td>
<td>Hua-Cheng Zhou and George Weiss- Tel-Aviv University- Israel</td>
</tr>
<tr>
<td>17:00 - 17:20</td>
<td>L1/L-infinity Control of Delayed and Quantized Systems Without State Information</td>
<td>Anatoly Khina, Yorie Nakahira and Babak Hassibi- California Institute of Technology- USA</td>
</tr>
<tr>
<td>17:20 - 17:40</td>
<td>Robust Simple Adaptive Control of Linear Systems with Saturation</td>
<td>Isaac Yaesh¹ and Uri Shaked²- (1) IMI=Israel (2) Tel-Aviv University- Israel</td>
</tr>
<tr>
<td>17:40 - 18:00</td>
<td>Navigation Approaches for Hovering Autonomous Underwater Vehicles</td>
<td>Alon Baruch, Eran Kamber, Itay Arbel, Boris Braginsky and Hugo Guterman- Ben-Gurion University- Israel</td>
</tr>
</tbody>
</table>
Friday, November 18th, 2016

Session 1: 8:30-10:30

SX3: Chairs – Mark Shtaif1 and Dan Marom2- (1) Tel-Aviv University (2) Hebrew University

Special Session on Optical Communications Part 1
8:30 - 8:50 Energy and Entropy Conservation for Optical Fiber Channels- 402
Gerhard Kramer, Technical University of Munich, Germany

8:50 - 09:10 Nonlinear Fourier transform: recent progress and challenges
Sergei K. Turitsyn – Aston University (UK)

9:10 - 09:30 Optical transmission based on the nonlinear Fourier transform: estimating the capacity limits- 138
Stanislav Derevyanko1, Jaroslav Prilepsky2 and Sergei Turitsyn2– (1) Ben Gurion University, Israel, (2) Aston University (UK)

9:30 – 9:50 What challenges the optical fiber channel brings to information theory
René-Jean Essiambre – Nokia Bell Labs- Israel

9:50 - 10:10 Space-division multiplexed transmission over multimode and coupled-core fibers
Roland Ryf – Nokia Bell Labs, NJ, USA

10:10 - 10:30 Planning of SDM networks utilizing different types of SDM switching schemes and SDM transmission fibers
Ioannis Tomkos – AIT, Greece

IT2: Chair – Shlomo Shamai- Technion

Information Theory 2
8:30 - 8:50 f-Divergence Inequalities via Functional Domination- 1
Igal Sason and Sergio Verdu- Technion- Israel

8:50 - 09:10 Wiretap Channel with Random States Non-Causally Available at the Encoderer - 89
Ziv Goldfeld1, Paul Cuff2 and Haim Permuter1– (1) Ben-Gurion University- Israel (2) Princeton University- USA

Oron Sabag1, Haim Permuter1 and Henry Pfister2– (1) Ben-Gurion University- Israel (2) Duke University- USA

9:30 - 9:50 The Resolution of Binary Hypothesis Testings – 113
Michael Bell and Yuval Kochman- Hebrew University- Israel

9:50 - 10:10 Two Measures of Dependence – 106
Amos Lapidoth and Christoph Pfister- ETH Zurich- Switzerland

10:10 - 10:30 Conditional and Relevant Common Information – 101
Amos Lapidoth and Michele Wigger- (1) ETH Zurich- Switzerland (2) Telecom Paristech- France
SX4: Chair – Ron Kimmel - Technion

Special Session on Image Analysis & Processing
8:30 - 8:50 Partial Functional Correspondence - 4
Emanuele Rodolà - USI Lugano / Intel- Switzerland

8:50 - 09:10 Fast Geometric Embedding - 17
Gil Shamai and Ron Kimmel- Technion- Israel

09:10 - 09:30 On improvement of Maps between Shapes - 23
Danielle Ezuz - Technion- Israel

9:30 - 9:50 Subspace LS MDS - 24
Amit Boyarski¹, Alex Bronstein¹ and Michael Bronstein² (1) Tel-Aviv University- Israel (2) University of Lugano- Switzerland

9:50 - 10:10 An Alternating Direction Method for Optical Flow Estimation with l_p Regularization - 44
Naftali Zon and Nahum Kiryati- Tel-Aviv University- Israel

10:10 - 10:30 Wide Baseline Stereo Matching with Convex Bounded-Distortion Constraints
Tal Amir and Ronen Basri - Weizmann Institute of Science - Israel

COD: Chair – Yuval Cassuto - Technion

Coding
8:30 - 8:50 Designing and Encoding QC-LDPC Codes using Matrices over Commutative Rings - 39
Ishai Ilani- SanDisk - Israel

8:50 - 09:10 On Iterative Decoding of Short Codes - 111
Nimrod Shacham and Dr. Ofir Amrani- Tel-Aviv University- Israel

09:10 - 09:30 Adaptive Threshold Read Algorithms in Multi-level Non-Volatile Memories with Uncertainty - 173
Amit Solomon and Yuval Cassuto- Technion- Israel

9:30 - 9:50 Robust Error Detecting Codes for Multilevel Memories - 210
Yaara Neumeier and Osnat Keren- Bar-Ilan University- Israel
POW4: Chair: Alon Kuperman- Ben-Gurion University
Power electronics and renewables
Sponsored by: solar\textregistered

8:30 - 8:50 Enhancing the Power Production of PV Modules by Rearranging the Solar-Cells Interconnections - 29
Assaf Peled and Joseph Appelbaum- Tel-Aviv University- Israel

8:50 - 09:10 The Effect of Interconnecting Solar Cells in the PV module on the Power Output - 130
Yehya Massalha and Joseph Appelbaum- Tel-Aviv University- Israel

09:10 - 09:30 Electricity Quality Estimation in Consequence of PV Power Penetration into Israeli Grid - 150
Daniel Kurtz¹ and Moshe Averbuch² (1) IEC- Israel (2) Ariel University- Israel

9:30 - 9:50 Technical and Economic Comparison between Fixed and Sun-tracking PV Power Plants in the Negev Region, Israel - 186
Marcos Roitman, Itai Shimon Zitan and Dmitri Zaharin- Shamoon College of Engineering- Israel

9:50 - 10:10 Robust Droop Control of Grid-Connected Inverters - 157
Moria Elkayam¹, Josep M. Guerrero², Alon Kuperman³ and Alex Belenky³- (1) Ariel University- Israel (2) Aalborg University- Denmark (3) Ben-Gurion University- Israel

CIR1: Chair - Shahar Kvatinsky - Technion
Circuits and devices

8:30 - 8:50 CMOS-SOI-NEMS Uncooled Infrared Presence Sensor – 105
Alex Zviagintsev, Tanya Blank, Sharon Bar-Lev, Igor Brouk, Ilan Bloom and Yael Nemirovsky- Technion-Israel

8:50 - 09:10 Design Methodology for Stateful Memristive Logic Gates – 40
Nimrod Wald and Shahar Kvatinsky- Technion-Israel

09:10 - 09:30 Magneto-lithography, a simple and inexpensive method for high-throughput, surface patterning – 74
Amos Bardea¹ and Alexander Yoffe²- (1) Holon Institute of Technology-Isreal (2) Weizmann Institute of Science- Israel

9:30 - 9:50 Device for Cardiovascular System Monitoring Based on Estimation of Synchronization between its Low-Frequency Rhythms – 125
Vladimir Ponomarenko¹, Mikhail Prokhorov¹, Anatoly Karavaev¹, Danil Kulminskiy¹, Anton Kiselev² and Vladimir Gridnev²- (1) Saratov Branch of Kotel’nikov Institute of Radio Engineering and Electronics of Russian Academy of Sciences- Russia (2) Saratov State Medical University n.a. V.I. Razumovsky- Russia

9:50 - 10:10 Modeling and Simulations of MOSQWell Transistor future Building Block for Optical Communication – 126
T Michael Bendayan¹, Avraham Chelly² and Avi Karsenty³- (1) RAFAEL- Israel (2) Bar-Ilan University-Israel (3) Lev Academic Center- Israel
10:10 - 10:30 A multi-turn twisted inductor for on-chip cross-talk reduction – 239
Kobi Ben-Atar¹, Peter Martin² and Richard Horn²- (1) Tel-Aviv University-Israel (2) Sequans Communications- United Kingdom

SP2: Chair – Boaz Rafaely- Ben Gurion University

Signal Processing
8:30 - 8:50 Spatio-Spectral Masking for Spherical Array Beamforming – 15
Uri Abend and Boaz Rafaely- Ben-Gurion University- Israel

8:50 - 09:10 Blind Deconvolution Via Maximum Kurtosis Adaptive Filtering –19
Deborah Pereg¹ and Doron Benzi²- (1) Technion- Israel (2) jerusalem college of engineering- Israel

09:10 - 09:30 A Real-Life Experimental Study on Semi-Supervised Source Localization Based on Manifold Regularization –27
Bracha Laufer-Goldshtein¹, Ronen Talmon² and Sharon Gannot¹ – (1) Bar-Ilan University-Israel (2) Technion- Israel

9:30 - 9:50 Comparison of binaural multichannel Wiener filters with binaural cue preservation of the interfering source - 90
Elior Hadad¹, Daniel Marquardt², Simon Doclo² and Sharon Gannot¹- (1) Bar-Ilan University-Israel (2) University of Oldenburg- Germany

9:50 - 10:10 Multiple DoA Estimation and Blind Source Separation Using Expectation-Maximization Algorithm - 145
Yuval Dorfan, Ofer Shwartz, Boaz Shwartz, Emanuel Habets and Sharon Gannot – (1) Bar-Ilan University-Israel (2) International Audio Laboratories Erlangen - Germany

10:10 - 10:30 A statistical model for room impulse responses encompassing early and late reflections -222
Dovid Y. Levin and Sharon Gannot- Bar-Ilan University-Israel
Friday, November 18th, 2016

Session 2: 11:00-13:20

SX3: Chairs – Mark Shtaif\(^1\) and Dan Marom\(^2\)- (1) Tel-Aviv University (2) Hebrew University

Special Session on Optical Communications Part 2

11:00 – 11:20 The Kramers Kronig receiver: a coherent receiver scheme based on direct-detection
Antonio Mecozzi – University of L’Aquila- Italy

11:20 – 11:40 Digital Signal Processing for Access and Short Reach Optical Networks
Werner Rosenkrantz, Christian-Albrechts-Universität zu Kiel- Germany

11:40 – 12:00 On the Statistics of Nonlinear Interference Noise- 118
Ori Golani\(^1\), Mark Shtaif\(^1\), Meir Feder\(^1\) and Antonio Mecozzi\(^2\)
– (1) Tel Aviv University- Israel, (2) L’Aquila University- Italy

12:00 – 12:20 Real-Time Implementation of DFT-S OFDM Receiver Based on Digital Sub-banding- 200
Alexander Tolmachev\(^1\), Maxim Meltsin\(^1\), Rolf Hilgendorf\(^1\), Mordechay Orbach\(^1\), Yitzhak Birk\(^1\), Shalva Ben-Ezra\(^2\), and Moshe Nazarathy\(^1\) – (1) Technion- Israel (2) Finisar- Israel

12:20 – 12:40 Visible light communication or Li-Fi
Shlomi Arnon – Ben-Gurion University- Israel

IT3: Chair – Yuval Kochman- Hebrew University

Information Theoretic Signal Processing

11:00 – 11:20 Low-Redundancy Bit Interleaving – 140
Alon Klein-Orbach and Yuval Kochman- Hebrew University- Israel

11:20 – 11:40 A Diversity Multiplexing Tradeoff Under Generalized Sampling Expansion – 172
Nir Hadas and Meir Feder- Tel-Aviv University- Israel

11:40 – 12:00 Universal Outage Behavior of Rate-Optimized Precoded Integer Forcing Over MIMO Channels - 238
Elad Domanovitz and Uri Erez- Tel-Aviv University- Israel

12:00 – 12:20 Two Asymmetric Descriptions Based on Many Symmetric Descriptions – 201
Adam Mashiach\(^1\), Ram Zamir\(^1\), Jan Østergaard\(^2\) and Yuval Kochman\(^3\)
– (1) Tel-Aviv University- Israel (2) Aalborg University- Denmark
(3) Hebrew University
- Israel

12:20 – 12:40 Regularization Parameter Estimation for Ridge and LASSO Regressions Using Bayesian Interpolation - 178
Naor Huri and Meir Feder- Tel-Aviv University- Israel

12:40 – 13:00 The typical subset from many deterministic frames exhibits limiting random-like MANOVA behavior – 214
Marina Haikin\(^1\), Ram Zamir\(^1\) and Matan Gavish\(^2\)- (1) Tel-Aviv University- Israel
SX4 : Chair - Ron Kimmel- Technion
Special Session on Image Analysis & Processing
11:00 – 11:20 Learning to stereo - 65
Ron Slossberg, Aaron Wetzler and Ron Kimmel- Technion - Israel
Alexander Bronstein – Technion - Israel
11:40 – 12:00 Empirical Analysis of Dynamical Systems with Informed Geometry Learning - 6
Or Yair and Ronen Talmon – Technion - Israel
12:00 – 12:20 Randomized Independent Component Analysis - 68
Matan Sela and Ron Kimmel - Technion – Israel
12:20 – 12:40 Understanding Geometry
Ron Kimmel - Technion – Israel
12:40 – 13:00 Multiscale non-rigid point cloud registration
Hongkai Zhao – University of California, Irvine – USA
13:00 - 13:20 Geodesic curves for region-based segmentation
Laurent D. Cohen, Da Chen, Jean-Marie Mirebeau - Paris-Dauphine University - France

SX5: Chair - Raja Giryes – Tel-Aviv University
Special Session on Deep Learning
11:00 – 11:20 On the generalization error of Deep Neural Networks - 342
Miguel Rodrigues – University College London- UK
11:20 – 11:40 Learning to Decode Linear Codes Using Deep Learning
Eliya Nachmani, Yair Beery and David Burstein – Tel Aviv University - Israel
11:40 – 12:00 Deep learning in medical imaging- 344
Hayit Greenspan, Tel Aviv University- Israel
12:00 – 12:20 Learning to Count with CNN Boosting- 343
Lior Wolf – Tel Aviv University- Israel
12:20 – 12:40 Deep learning by contrastive measures- -341
Elad Hoffer and Nir Ailon – Technion- Israel
12:40 – 13:00 Solving Inverse Problems With Deep Learning -345
Raja Giryes – Tel Aviv University- Israel

POW5: Chair : Sigmond Singer- Tel-Aviv University
Power Electronics
Sponsored by: solaredge
11:00 – 11:20
A Novel Approach to Arc Flash Mitigation Using Passive Series Filters – 69
Amir Khan and Nagy Bengiamin- *California State University Fresno-USA*

11:20 – 11:40
Digital Control of a High Voltage Power Supply – 80
Liran Katzir and Doron Shmilovitz- *Tel-Aviv University- Israel*

11:40 – 12:00
Control and Voltage Regulation of General Transposed Series-Parallel Converter – 122
Yuval Beck¹ and Sigmond Singer²- (1) *Holon Institute of Technology- Israel*
(2) *Tel-Aviv University- Israel*

12:00 – 12:20
Optimal Switching in a Three-Level Inverter: an Analytical Approach – 215
Almog Salman, Yair Cohen, Tirza Routtenberg, Lior Simchon and Rual Rabinovici- *Ben-Gurion University- Israel*

12:20 – 12:40
Tracking Performance Oriented Design of Proportional-Resonant Controllers under Finite Control Bandwidth and Actuator Delay – 160
Yeshialeka Basha¹, Alex Belenky² and Alon Kuperman²-
(1) *Ariel University-Israel*
(2) *Ben-Gurion University- Israel*

12:40 – 13:00
Estimation of Harmonic Disturbances with Time Delay UDE Based Controller – 236
Nir Alshek¹, Moria Elkayam¹ and Alon Kuperman²- (1) *Ariel University-Israel*
(2) *Ben-Gurion University- Israel*

CIR2: Chair – Joseph Shor, Bar Ilan University

Circuits and devices Cont.

11:00 – 11:20
Low Temperature Poly-Silicon Thin Film Transistor Flexible Sensing Circuit – 217
Dana Keren¹, Avi Efrati¹, Francesco Maita², Luca Maiolo², Antonio Minotti², Alessandro Pecora², Guglielmo Fortunato², Mario Zajac¹ and Yosi Shacham-Diamond¹- (1) *Tel-Aviv University- Israel*
(2) *IMM-CNR-Italy*

11:20 – 11:40
Electrostatically Formed Nanowire based Silicon-on-Insulator tri-gate Field Effect Transistor for effective sensing of temperature – 220
Klimentiy Shimanovich¹, Yonatan Vaknin¹, Tom Coen¹, Gil Shalev¹, Yakov Roizin² and Yossi Rosenwaks¹- (1) *Tel-Aviv University- Israel*
(2) *TowerJazz - Israel*

11:40 – 12:00
Analysis of conversion time in asynchronous successive charge redistribution ADC with varying rate of charge transfer – 223
Dariusz Kościelnik¹, Miroslaw Pawlak² and Marek Miśkowicz²- (1) *AGH University of Science and Technology- Poland*
(2) *University of Manitoba- Canada*

12:00 – 12:20
Differential sub-harmonic injection lock VCO with fast start up – 180
Nitzan Oz and Emanuel Cohen- *Technion- Israel*

12:20 – 12:40
Digital Multi-Level Closed Loop Design for Wideband Envelope Tracking Systems – 185
SP3: Chair – David Dov- Technion

Signal Processing 3: Audio and Speech

11:00 – 11:20 Kernel Method for Speech Source Activity Detection in Multi-modal signals – 14
David Dov, Ronen Talmon and Israel Cohen- Technion-Israel

11:20 – 11:40 Speech Quality Assessment Using EEG Signals – 50
Omri Bar and Ilan D. Shalom- Ben-Gurion University- Israel

11:40 – 12:00 Real-Time Cochlear Noise Reduction Algorithm For Embedded Platforms – 91
Uriya Saroussi, Miriam Furst and Shlomo Weiss- Tel-Aviv University- Israel

12:00 – 12:20 Estimation of Speaker Individual Spectral Envelope for Pitch Tracking Improvement
Yaniv Zonis, Yaakov Buchris and Israel Cohen- Technion-Israel

Anna Barnov¹, Alejandro Cohen¹, Morag Agmon¹, Vered Bar Bracha¹, Shmulik Markovich-Golan¹ and Sharon Gannot² – (1) Intel-Israel (2) Bar-Ilan University- Israel
Special IC SEE 2016 Symposia

Thursday Nov. 17 2016
Welcome note (8:20 – 8:30)
George Weiss and Michael Margaliot, Tel Aviv University

Session 1 (8:30 – 10:30) – Engineering Control
8:30 – 9:15 Miroslav Krstic, UCSD. Keynote Lecture
Control of PDE-ODE cascades,
9:15 – 9:40 Michael Margaliot, Tel Aviv University
Modeling and analyzing ribosome flow
9:40 – 10:05 Emilia Fridman, Tel Aviv University
Networked control systems: a time delay approach
9:40 – 10:05 Daniel Zelazo, Technion, Israel
Fekete points, formation control, and the balancing problem

Session 2 (11:00 – 13:00) – Power Electronics
11:00 – 11:45 Josep Guerrero, Univ. of Aalborg, Denmark, Keynote Lecture
Advanced control architectures for AC and DC micro grids
11:45 – 12:10 Yoash Levron, Technion, Israel
Reduction of power system dynamic models using sparse representations
12:10 – 12:35 Bernhard Maschke, Univ. Claude Bernard, Lyon, France
Thermodynamics and control
12:35 – 13:00 Li Ran, Univ. of Warwick, UK
Mitigation of network fault level constraint for distributed generation

Session 3 (14:00 – 16:00) – Engineering Control
14:00 – 14:45 Vivek Borkar, IIT Bombay, India
Concentration effects in stochastic algorithms
14:45 – 15:10 George Weiss, Tel Aviv University
Stability of the integral control of stable nonlinear systems
15:10 – 15:35 Nikita Barabanov, North Dakota State University
Stability and control of hybrid infinite dimensional systems
15:35 – 16:00 Izhar Or, Technion, Israel
Dynamics and control of robotic locomotion
Symposium on Information Theory
Organizer: Anelia Somekh-Baruch
(see abstracts and bios on page 45)

Welcome note (8:30 – 8:40)
Anelia Somekh-Baruch

Session 1 (8:40 – 10:30)
8:40 – 9:20 Amos Lapidoth, ETH Zurich, Switzerland
Fun with Feedback and Various Notions of Channel Capacity
9:20 – 10:00 Tsachy Weissman, Stanford University, USA
Chained Relative Entropy and Mutual Information
10:00 – 10:30 Meir Feder, Tel-Aviv University, Israel
A Mixture Approach for On-Line Learning under the Log-Loss

Session 2 (11:00 – 13:00)
11:00 – 11:30 Albert Guillén i Fàbregas, ICREA and Universitat Pompeu Fabra, Spain
From the Meta-Converse Bound to Perfect Codes
11:30 – 12:00 Shlomo Shamai, Technion, Israel
Information Theory: Some Old and Some New
12:00 – 12:30 Haim Permuter, Ben-Gurion University, Israel
A New Coding Scheme for Cooperation in Semi-Deterministic Channels
12:30 – 13:00 Shraga Bross, Bar-Ilan University, Israel
The Rate-and-State Capacity with Feedback

Session 3 (14:30 – 16:30)
14:30 – 15:00 Giuseppe Caire, TU Berlin, Germany
Efficient Channel Covariance Estimation in Massive MIMO
15:00 – 15:30 Gerhard Kramer, Technical University of Munich, Germany
Capacity of Cloud-RAN Downlink Channels
15:30 – 16:00 Neri Merhav, Technion, Israel
Lower Bounds on Parameter Modulation–Estimation Under Bandwidth Constraints
16:00 – 16:30 Joseph Boutros, Texas A&M University, Qatar
Construction-A Lattices with Number Fields

Session 4 (17:00 – 18:00)

17:00 – 17:30 Emre Telatar, EPFL, Switzerland
Approximation of Output Statistics

17:30 – 18:00 Ioannis Kontoyiannis, Department of Informatics, Athens University of Economics & Business. Greece
Context-Tree Weighting for Bayesian Inference
Welcome note (8:30 – 8:40)
Israel Cohen, Technion, and Sharon Gannot, Bar Ilan University

Session 1 (8:40 – 10:30)
8:40-9:40 Keynote, Walter Kellermann, Friedrich-Alexander-University, Erlangen, Germany
Current Challenges in Acoustic Signal Processing for Natural Human/Machine Interfaces
9:40-10:30 Emanuël A.P. Habets, International Audio Laboratories Erlangen, Erlangen, Germany
Sound Acquisition using Parametric Sound Field Models: Classical and Bayesian Approaches

Session 2 (11:00 – 12:50)
11:00 – 12:00 Keynote, Jingdong Chen, Northwestern Polytechnical University (NPU), Xi’an, China
Differential and Superdirective Beamforming with Small Linear and Circular Microphone Arrays
12:00 – 12:50 Simon Doclo, University of Oldenburg, Oldenburg, Germany
Incorporating sparsity into multi-microphone speech dereverberation techniques

Session 3 (14:00 – 15:50)
14:00 – 15:00 Keynote, Chandra Sekhar Seelamantula, Indian Institute of Science, Bangalore, India
A New Tool for Spectro-Temporal Analysis of Speech Signals
15:00 – 15:50 Karen Livescu, Toyota Technological Institute at Chicago, Chicago, USA
Multi-view representation learning for speech

Session 4 (16:10 – 18:00)
16:10 – 17:10 Keynote, Paris Smaragdis, University of Illinois at Urbana-Champaign, USA
Machine Learning Approaches for Speech Enhancement
17:10 – 18:00 Richard C. Hendriks, Delft University of Technology, Delft, The Netherlands
Optimizing Speech Intelligibility Using a Simple Model of Communication
Welcome note (8:20 – 8:30)
George Weiss and Michael Margaliot

Welcome note
8:20 – 8:30
George Weiss and Michael Margaliot

Session 1 - Engineering Control
8:30 – 10:30

• **Keynote:** Control of PDE-ODE cascades
 Miroslav Krstic (Univ. Calif. San Diego)
 8:30 - 9:15
 Abstract: In this talk I will review control designs for cascades of transport, wave, and heat equations into ODE systems. The transport-ODE cascade represents the classical problem of input delay, whereas the other PDE-ODE cascades arise in systems such as oil drilling and melting/crystallization.

• **Modeling and analyzing ribosome flow**
 Michael Margaliot (Tel Aviv Univ.)
 9:15 - 9:40
 Coauthors: Yoram Zarai, Tamir Tuller and Eduardo D. Sontag
 Abstract: A crucial stage in the production of proteins from the information encoded in the genes is called translation. During this stage, complex molecular machines, called ribosomes, bind to the mRNA and “read” it in a sequential manner. In 2011, Reuveni et al. suggested a nonlinear model for this process called the Ribosome Flow Model (RFM). The RFM can be derived as a mean-field approximation of an important model from non-equilibrium statistical physics called the Totally Asymmetric Simple Exclusion Process (TASEP).
 In this talk, we analyze the RFM using various tools from systems and control theory including contraction theory, monotone systems theory, the analytic theory of continued fractions, and convex analysis. We detail several biological implications of the analysis and compare them to known experimental results.

• **Networked control systems: a time delay approach**
 Emilia Fridman (Tel Aviv Univ.)
 9:40 – 10:05
 Abstract: Networked control systems (NCSs) are systems with spatially distributed sensors, actuators and controller nodes which exchange data via a communication network. Compared to
traditional feedback control systems, where the components are connected via point-to-point cables, the introduction of communication network media brings great advantages, such as low cost, reduced weight, simple installation/maintenance and long distance control. There are three main approaches to NCSs: the discrete-time, the hybrid system and the time-delay approaches.

Recent results on NCSs via the time-delay approach will be presented. These results take into account variable sampling intervals, communication delays and scheduling protocols. Unlike other approaches, the time-delay approach allows treating large communication delays (that may be larger than the sampling intervals). Extensions of the results to large-scale NCSs with asynchronous networks and to parabolic PDEs will be mentioned.

- **Fekete points, formation control, and the balancing problem**
 Daniel Zelazo (Technion, Haifa)
 10:05 – 10:30

 Abstract: In this talk, we explore a particular formation control problem, where a team of dynamical systems are tasked with balancing their spatial configuration on a given submanifold that determines the shape of the formation. The control algorithm comprises of two parts: the first is a decentralized control that asymptotically drives each agent in a stable fashion to the desired submanifold, and the second is a distributed control law that works to maximize the pairwise distances between connected agents on the submanifold. It turns out that our approach has a connections to the study of **Fekete points** along with graph theoretic interpretations for the equilibrium points of the dynamical system.

Session 2 - Power Electronics
11:00 – 13:00

- **Keynote: Advanced control architectures for AC and DC micro grids**
 Josep Guerrero (Univ. of Aalborg, Denmark)
 11:00 – 11:45

 Abstract: A Micro grid is an electrical distribution network consisted of distributed generators, local loads, and energy storage systems that can operate in grid-connected or islanded modes. Different technologies are combined together, such us power converters, control, communications, optimization, and so on. This way the energy can be generated and stored near to the consumption points, improving the stability and reducing the losses produced by the large power lines. The keynote will cover not only AC micro grids of conventional islanded systems to support AC loads are demanded in several areas such as islands, rural and remote areas, but also DC micro grids that may conform next low-voltage distribution systems and micro grids will be based on DC, since many generators, storages and loads operate in DC, such photovoltaics, batteries, supercapacitors, LEDs, laptops, and electronic equipment. Important aspect on micro grid research will be presented like modelling, control and operation, energy storage, standard-based ICT and smart-metering, including wireless communications, power line communications, bus signaling, and so on. The application of smart meters in micro grids will be highlighted. Energy Management Systems and Optimization: Online and offline optimization systems are required to enhance micro grid operation regarding energy price, power losses, and economical aspects. Advanced technologies like Multi-Agent Systems (MAS) will be presented as powerful tool for distributed energy systems. Previous experiences in Danish electrical system like the Cell Controller project used MAS technologies to balance dispersed energy generation and consumption. Power quality aspects will be introduced, such as voltage and current harmonics and unbalances that have to be taken into account in a micro grid due to the existence of nonlinear and/or single-phase loads. In such a case, the coordination between power electronics converters is needed in order to enhance system power quality in a cooperative way. Finally, the integration within the Internet of Things (IoT) and the Energy Internet concepts will be introduced for micro grid clusters solutions. Many examples of real micro grid systems will be presented, such a demo
site in Shanghai, China, a Smart Home living lab in Denmark, and so on. Finally, one important application in micro grids is maritime power systems, which include seaports, all and hybrid electrical ships, ferries and vessels.

- **Reduction of power system dynamic models using sparse representations**
 Yoash Levron (Technion, Haifa)
 11:45 – 12:10

 Abstract: Large-scale integration of renewable sources in power grids requires accurate and reliable analysis of dynamic phenomena in large power systems. Toward this end, this talk presents a model reduction technique that simplifies the dynamic equations of complex power networks, using sparse representations of the system matrices. Standard model reduction techniques are based on the idea of removing components from the state vector. Instead, we propose to eliminate elements from the system matrices, such that these matrices become sparse. This is achieved by three different numeric algorithms that approximate the initial system model using a minimal number of nonzero elements. These algorithms lead to simplified dynamic models, since the complexity of operations involving sparse matrices is primarily affected by the matrices density. Furthermore, this approach enables to identify significant dynamic relations between units in the network, and may simplify the analysis of complex dynamic phenomena in power systems.

- **Thermodynamics and control**
 Bernhard Maschke (Univ. Claude Bernard, Lyon, France)
 12:10 – 12:35

 Abstract: The intrinsic description of open irreversible thermodynamic systems has given rise to the definition of control Hamiltonian systems defined on contact manifolds, which have been called input-output contact systems. In this talk, we shall analyze some system-theoretic properties of such systems. We shall, in particular, analyze their structure-preserving feedback, characterize a class of contact forms achievable in closed-loop and consider the (partial) stabilization of these systems.

- **Mitigation of network fault level constraint for distributed generation**
 Li Ran (Univ. of Warwick, UK), coauthors: Ahmad Mohamed Abdel Motalab Ali Sol, Han Qin, and Robert Wu (Warwick)
 12:35 – 13:00

 Abstract: In this work we analyse the trend of change of system fault level and explain under which condition the increase of fault level would become a constraint limiting further increase of distributed generation. We will focus on how power electronics could be used to mitigate the problem without overly increasing the cost and losses in the system.
Session 3: Engineering Control
14:00 – 16:00

- **Concentration effects in stochastic algorithms**
 Vivek Borkar (IIT Bombay, India)
 14:00 – 14:45

 Abstract: This talk will describe concentration of suitably interpolated iterates of a stochastic approximation algorithm around a limiting differential equation trajectory with high probability. As a consequence, we get sample complexity results as well as bounds on \"trapping probability\" of a stable but possibly undesired equilibrium.

- **Stability of the integral control of stable nonlinear systems**
 George Weiss (Tel Aviv Univ.)
 Coauthor: Vivek Natarajan (IIT Bombay)
 14:45 – 15:10

 Abstract: PI controllers are the most widespread type of controllers and there is an intuitive understanding that if their gains are sufficiently small and of the correct sign, then they \"always\" work. In this research we try to give some rigorous backing to this claim, under specific assumptions. Let \(P \) be a nonlinear system described by \(\dot{x} = f(x;u) \), \(y = g(x) \), where the state trajectory \(x \) takes values in \(\mathbb{R}^n \), \(u \) and \(y \) are scalar and \(f;g \) are of class \(C^1 \). We assume that there is a Lipschitz function \(\Xi : [\underline{u}; \overline{u}] \rightarrow \mathbb{R}^n \) such that for every constant input \(u_0 \in [\underline{u}; \overline{u}] \), \(\Xi(u_0) \) is an exponentially stable equilibrium point of \(P \). We also assume that \(G(u) = g(\Xi(u)) \), which is the steady state input-output map of \(P \), is strictly increasing.

 Denoting \(\gamma_{\min} = G(\underline{u}) \) and \(\gamma_{\max} = G(\overline{u}) \), we assume that the reference value \(r \) is in \((\gamma_{\min}; \gamma_{\max}) \). Our aim is that \(y \) should track \(r \), i.e., \(y \rightarrow r \) as \(t \) tends to infinity, while the input of \(P \) is only allowed to be in \([\underline{u}; \overline{u}] \). For this, we introduce a variation of the integrator, called the saturating integrator, and connect it in feedback with \(P \) in the standard way, with gain \(k > 0 \). We show that for any small enough \(k \), the closed-loop system is (locally) exponentially stable around an equilibrium point \((X(u);u) \), with a \"large\" region of attraction \(Xr \subset \mathbb{R}^n \times [\underline{u}; \overline{u}] \). When the state \((x(t);u(t)) \) of the closed-loop system converges to \((X(u);u) \), then the tracking error \(r \rightarrow 0 \) tends to zero. The compact set \(Xr \) can be made larger by choosing a larger parameter \(T > 0 \), resulting in smaller \(k \).
• **Stability and control of hybrid infinite dimensional systems**
 Nikita Barabanov (Fargo, North Dakota)
 15:10 – 15:35

 Abstract TBA

• **Dynamics and control of robotic locomotion**
 Izhar Or (Technion, Haifa)
 15:35 – 16:00

 Abstract: Locomotion of mobile robots or moving creatures is generated by internal actuation of shape changes combined with physical interaction with the surrounding environment. The mechanics of locomotion typically gives rise to nonlinear control systems which are governed by nonholonomic constraints. In this talk, two examples of (bio-)robotic locomotion systems will be overviewed: microswimmers and underactuated vehicles. Swimming microorganisms and micro-robotic swimmers whose motion is governed by low-Reynolds-number hydrodynamics, in which inertial effects are negligible, can be controlled by internal motors or by actuation of a time-varying external magnetic field. It will be shown how optimal control theory can be used in order to obtain optimal gaits for maximizing net displacement of Purcell’s three-link microswimmer model. Underactuated vehicles are governed by nonholonomic mechanics due to no-slip constraints of wheels, combined with momentum evolution. Analysis of a simple model of the Twistcar toy vehicle will be presented. It will be shown how explicit solutions obtained via asymptotic approximations can be used in order to study the effect of actuation type and physical parameters of the vehicle on its performance, as well as convergence properties of the motion.
Session 1
8:40 – 10:30
8:40 – 9:20 Amos Lapidoth, ETH Zurich, Switzerland
Fun with Feedback and Various Notions of Channel Capacity

Abstract: Shannon’s classical channel capacity is not the only notion of capacity to have been studied by information theorists. Others include, inter alia, the zero-error capacity, the zero-undetected-error capacity, and the mismatch capacity. In this talk I shall survey some of these capacities with special emphasis on their behavior in the presence of a feedback link from the channel output to the encoder.

The relationship, first observed by Csiszár and Narayan, between the mismatch capacity and the zero-undetected-error capacity, will allow us to use the results on the latter’s feedback behavior to study the former’s. With this approach we will show that feedback can increase the mismatch capacity; we will derive conditions that guarantee that the feedback mismatch capacity equals Shannon’s capacity; and we will derive new achievable rates for the cases where these conditions are not satisfied.

Bio: Amos Lapidoth received the B.A. degree in Mathematics, the B.Sc. degree in Electrical Engineering, and the M.Sc. degree in Electrical Engineering (1990) all from the Technion-Israel Institute of Technology. He received the Ph.D. degree in Electrical Engineering from Stanford University in 1995. In the years 1995-1999 he was an Assistant and Associate Professor at the department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology, and was the KDD Career Development Associate Professor in Communications and Technology. He is now Professor of Information Theory at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland. Dr. Lapidoth’s research interests are in Digital Communications and Information Theory. He is the author of the textbook “A Foundation in Digital Communication”, published by Cambridge University Press in 2009.

9:20 – 10:00 Tsachy Weissman, Stanford University, USA
Chained Relative Entropy and Mutual Information

Abstract: We study the "k-step chained relative entropy", which emerges in a large deviations analysis of the Wright-Fisher model of neutral genetic drift: a population with allele distribution q produces offspring with allele distribution w, which then produce offspring with allele distribution p, and so on, for k steps. The chained relative entropies enjoy some of the same properties as the relative entropy (such as joint convexity in the arguments) and appear in k-step versions of some of the same settings as the relative entropy (such as information projections and a conditional limit theorem). We further characterize the associated optimal k-step "path" of distributions appearing in the definition and apply our findings in a large deviations analysis of the Wright-Fisher process. We make a connection to information geometry via the continuum limit, where the number of steps tends to infinity, and the limiting path turns out to be a geodesic in the Fisher information metric. Finally, we state some natural extensions and applications (such as a k-step mutual information and a k-step maximum likelihood inference). We release code for computing the objects we study. Based on joint work with Dmitri Pavlichin.

Bio: Tsachy Weissman graduated summa cum laude with a B.Sc. in electrical engineering from the Technion, where he also earned his Ph.D. in 2001.
He then worked with the information theory group at HP Labs until 2003, when he joined Stanford University, where he is currently Professor of electrical engineering and incumbent of the STMicroelectronics chair in the school of engineering. He has spent leaves at the Technion, and at ETH Zurich. Tsachy’s research is focused on information theory, compression, communication, statistical signal processing, the interplay between them,
and their applications. He is an IEEE fellow and recipient of several best paper awards as well as prizes for excellence in research and teaching. He served on the editorial board of the IEEE Transactions on Information Theory, and currently serves on the editorial board of Foundations and Trends in Communications and Information Theory. He is Founding Director of the Stanford Compression Forum.

10:00 – 10:30 Meir Feder, Tel-Aviv University, Israel

A Mixture Approach for On-Line Learning under the Log-Loss

Abstract: A mixture approach for the problem of on-line learning under the logarithmic loss function is proposed and analyzed, both by theoretic upper bound and simulation. In this problem there is a sequence of input vectors \(x_1, x_2, \ldots, x_t, \ldots \) and a sequence of output classes \(y_1, y_2, \ldots, y_t, \ldots \), where \(y_t \in [1, \ldots, K] \) and the learner provides at each time given the past \(x_{t-1}, y_{t-1} \) and the current \(x_t \), a weight, or probability distribution \(p_t(1), \ldots, p_t(K) \) for the \(K \) classes.

The methods use a mixture approach and extends a similar approach used for universal prediction with log-loss. It is shown that for the 1-d barrier classification problem, on-line learning is possible for a constrained adversary, and that the normalized regret for different problems of finite Vapnik-Chervonenkis (VC) dimension may also tend to zero with data size, depending on the sequence of features given to the learner.

*Joint work with Yaniv Fogel.

Bio: Professor Meir Feder received the Sc.D. degree from the Massachusetts Institute of Technology (MIT) in 1987. After being a lecturer in MIT, in 1990 he joined the school of electrical engineering, Tel-Aviv University (TAU), where he is now a Professor and the holder of the Information Theory chair. From 2010-2013 he was the head of the EE school at TAU.

While serving in the Israeli defense Forces, he was awarded the 1978 “creative mind” award. He received several paper awards including the 1993 best paper award of the Information Theory Society. He was the recipient of the 1994 prize of Tel-Aviv University for excellent young scientists, the 1994 award of the Electronic Industry in Israel (awarded by the president of Israel), and the 1995 research prize in applied electronics awarded by Ben-Gurion University. He was a visiting professor in MIT and a visiting scientist in Bell Laboratories, Woods Hole Oceanographic Institution and Scripps Oceanography Institution. He is a Fellow of the IEEE for his contribution to communication, universal data prediction and universal compression.

In parallel to his academic career he is closely involved with the high-tech industry. In 1998 he co-founded Peach Networks, acquired in 2000 by Microsoft. He then co-founded Bandwiz, to provide massive content delivery systems using rateless codes. He was on the founding team of Final Inc., a high frequency trading firm. In 2004 he co-founded Amimon, a provider of wireless high-definition A/V connectivity solutions for the consumer, professional and medical markets. Currently he is an angel investor and serves on the board and advisory board of several US and Israeli based companies.

Session 2
11:00 – 13:00

11:00 – 11:30 Albert Guillén i Fàbregas, ICREA and Universitat Pompeu Fabra, Spain

From the Meta-Converse Bound to Perfect Codes

Abstract: This talk studies lower bounds to the channel coding error probability. For a family of symmetric channels, block lengths and coding rates, the error probability of the best code is shown to coincide with that of a binary hypothesis test with certain parameters. The points in which they coincide, are precisely the points at which perfect or quasi-perfect codes exist.

Bio: Albert Guillén i Fàbregas received the Telecommunication Engineering Degree and the Electronics Engineering Degree from Universitat Politècnica de Catalunya and Politecnico di Torino, respectively in

Since 2011 he has been an ICREA Research Professor at Universitat Pompeu Fabra. He is also an Adjunct Researcher at the University of Cambridge. He has held appointments at the New Jersey Institute of Technology, Telecom Italia, European Space Agency (ESA), Institut Eurécom, University of South Australia, University of Cambridge, as well as visiting appointments at EPFL, École Nationale des Télécommunications (Paris), Universitat Pompeu Fabra, University of South Australia, Centrum Wiskunde & Informatica and Texas A&M University in Qatar. His research interests are in the areas of information theory, coding theory and communication theory.

Dr. Guillén i Fàbregas is a Member of the Young Academy of Europe, and received the Starting Grant from the European Research Council, the Young Authors Award of the 2004 European Signal Processing Conference, the 2004 Best Doctoral Thesis Award from the Spanish Institution of Telecommunications Engineers, and a Research Fellowship of the Spanish Government to join ESA. He is also an Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY, an Editor of the Foundations and Trends in Communications and Information Theory, Now Publishers and was an Editor of the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS.

11:30 – 12:00 Shlomo Shamai, Technion, Israel

Information Theory: Some Old and Some New

Abstract: The presentation starts by demonstrating in a descriptive way the origin of information theory in Shannon's 1948 monumental work, and pointing some interdisciplinary aspects within general areas of electrical engineering and beyond. A change of paradigms in information theory from being a pure mathematical theory of communications to a theory with wide scope direct practical implications and applications is overviewed. To demonstrate the rich aspects of the problems considered and their implications as well as some inter-disciplinary connections, we focus on a simple matrix based linear additive Gaussian model. From a personal viewpoint, we elaborate on the information-estimation intimate connection, mentioning its impact on non-linear filtering and on recent views of efficient coding in single and multi-terminal channels. Possible extensions and a short outlook conclude the presentation.

Bio: Shlomo Shamai (Shitz) received the B.Sc., M.Sc., and Ph.D. degrees in electrical engineering from the Technion---Israel Institute of Technology, in 1975, 1981 and 1986 respectively.

During 1975-1985 he was with the Communications Research Labs, in the capacity of a Senior Research Engineer. Since 1986 he is with the Department of Electrical Engineering, Technion—Israel Institute of Technology, where he is now a Technion Distinguished Professor, and holds the William Fondiller Chair of Telecommunications. His research interests encompasses a wide spectrum of topics in information theory and statistical communications.

Dr. Shamai (Shitz) is an IEEE Fellow, a member of the Israeli Academy of Sciences and Humanities and a foreign member of the US National Academy of Engineering. He is the recipient of the 2011 Claude E. Shannon Award and the 2014 Rothschild Prize in Mathematics/Computer Sciences and Engineering.

He has been awarded the 1999 van der Pol Gold Medal of the Union Radio Scientifique Internationale (URSI), and is a co-recipient of the 2000 IEEE Donald G. Fink Prize Paper Award, the 2003, and the 2004 joint IT/COM societies paper award, the 2007 IEEE Information Theory Society Paper Award, the 2009 and 2015 European Commission FP7, Network of Excellence in Wireless COMmunications (NEWCOM++, NEWCOM#) Best Paper Awards, the 2010 Thomson Reuters Award for International Excellence in Scientific Research, the 2014 EURASIP Best Paper Award (for the EURASIP Journal on Wireless Communications and Networking), and the 2015 IEEE Communications Society Best Tutorial Paper Award. He is also the recipient of 1985 Alon Grant for distinguished young scientists and the 2000 Technion Henry Taub Prize for Excellence in Research. He has served as Associate Editor for the Shannon Theory of the IEEE Transactions on Information Theory, and has also served twice on the Board of Governors of the Information Theory Society. He has served on the Executive Editorial Board of the IEEE Transactions on Information Theory.
12:00 – 12:30 Haim Permuter, Ben-Gurion University, Israel

A New Coding Scheme for Cooperation in Semi-Deterministic Channels

Abstract: One of the main challenges in modern communication systems is how to generate efficient and optimal cooperation between users. In general, this problem is widely open however for some particular cases such as semi-deterministic relay channel and the multiple accesses channel with cribbing optimal coding scheme that achieve the capacity has been found. These coding schemes are based on partial-decode-and-forward, where the main idea is that one user decodes part of the message of the other user. However, if the users have different side information the partial-decode-and-forward coding scheme can no longer be applied.

In this talk we present an alternative and new optimal scheme, called cooperative binning, in which users cooperatively bin their received signals and forward the information to the next user, without attempting to explicitly recover any part of the message. The main advantage of this scheme is illustrated by considering state-dependent extensions of the aforementioned semi-deterministic setups.

During the talk I present a new open-source software that we developed, http:www.ee.bgu.ac.il/ fmeit that does Fourier-Motzkin elimination for information theoretic inequalities, and can be very useful for researchers.

Bio: Haim Permuter received his B.Sc. (summa cum laude) and M.Sc. (summa cum laude) degrees in Electrical and Computer Engineering from the Ben-Gurion University, Israel, in 1997 and 2003, respectively, and the Ph.D. degree in Electrical Engineering from Stanford University, California in 2008.

Between 1997 and 2004, he was an officer at a research and development unit of the Israeli Defense Forces. Since 2009 he is with the department of Electrical and Computer Engineering at Ben-Gurion University where he is currently an associate professor.

Prof. Permuter is a recipient of several awards, among them the Fulbright Fellowship, the Stanford Graduate Fellowship (SGF), Allon Fellowship, and the U.S.-Israel Binational Science Foundation Bergmann Memorial Award and the ERC grant. Haim is currently serving on the editorial boards of the IEEE Transactions on Information Theory.

12:30 – 13:00 Shraga Bross, Bar-Ilan University, Israel

The Rate-and-State Capacity with Feedback

Abstract: The Rate-and-State capacity of a state-dependent channel with a state-cognizant encoder is the highest possible rate of communication over the channel when the decoder—in addition to reliably decoding the data—must also reconstruct the state sequence with some required fidelity. Feedback from the channel output to the encoder is shown to increase this capacity even for channels that are memoryless with memoryless states. This capacity is calculated here for such channels with feedback when the state reconstruction fidelity is measured using a single-letter distortion function and the state sequence is revealed to the encoder in one of two different ways: strictly-causally or causally. In case that the state sequence is revealed to the encoder noncausally we provide bounds on the capacity and identify a condition under which the bounds coincide.

Feedback does not increase the Rate-and-State capacity when the decoder must reconstruct the state sequence perfectly or, in some settings, when the channel is Gaussian and fidelity is measured in terms of mean squared-error.

Joint work with Amos Lapidoth

Bio: Shraga I. Bross received the B.Sc. and M.Sc. degrees from the Technion—Israel Institute of Technology, Haifa, in 1978 and 1983, and the Ph.D. degree from the University of Maryland, College Park in 1991, all in electrical engineering. During the 1991-1992 academic year he was a Post-doctoral Fellow in the ECE Department at the University of Waterloo, Canada. During 1992–1998 he was with Orckit Communications Ltd., Tel-aviv, Israel, in the capacity of a Senior Scientist. From 1998 to 2006 he was a Senior Research Fellow
at the EE Department, Technion. Since 2007 he is with the Engineering Department, Bar-Ilan University, Israel, where he is now an associate professor. His research interests are in Digital Communications and Information Theory.

Session 3
14:30 – 16:30
14:30 – 15:00 Giuseppe Caire, TU Berlin, Germany
Efficient Channel Covariance Estimation in Massive MIMO

Abstract: A way to reduce the complexity of a massive MIMO front-end consists of hybrid digital analog beamforming, where the analog part operates on the RF signal and projects the very high dimensional signal at the antenna ports onto a much slower dimensional space, which is then demodulated and sampled by a reduced number of RF chains. Joint Space Division and Multiplexing (JSDM) yields a powerful paradigm to design such digital/analog partition, but it requires the knowledge of the user channel covariance information. In this talk, we discuss efficient schemes to recover such covariance information from the low-dimensional projections of the channel vectors operated by the analog beamforming network. We show that three alternative formulations of the problem, maximum-likelihood estimation, compressed sensing with multiple measurement vectors, and super-resolution, yield essentially to very similar Semi-Definite Programs and yield similar performance. Furthermore, we present also low-complexity algorithms that are suitable for a practical FPGA/DSP implementation and can work in real time. The effectiveness of the proposed algorithms is demonstrated by comparing the system performance with that of a JSDM system with ideal covariance information.

Bio: Giuseppe Caire was born in Torino, Italy, in 1965. He received the B.Sc. in Electrical Engineering from Politecnico di Torino (Italy), in 1990, the M.Sc. in Electrical Engineering from Princeton University in 1992 and the Ph.D. from Politecnico di Torino in 1994. He has been a post-doctoral research fellow with the European Space Agency (ESTEC, Noordwijk, The Netherlands) in 1994-1995, Assistant Professor in telecommunications at the Politecnico di Torino, Associate Professor at the University of Parma, Italy, Professor with the Department of Mobile Communications at the Eurecom Institute, Sophia-Antipolis, France, and he is currently an Alexander von Humboldt Professor with the Electrical Engineering and Computer Science Department of the Technical University of Berlin, Germany, and an adjunct professor with the Viterbi School of Engineering, University of Southern California, Los Angeles.

He served as Associate Editor for the IEEE Transactions on Communications in 1998-2001 and as Associate Editor for the IEEE Transactions on Information Theory in 2001-2003. He received the Jack Neubauer Best System Paper Award from the IEEE Vehicular Technology Society in 2003, the IEEE Communications Society & Information Theory Society Joint Paper Award in 2004 and in 2011, the Okawa Research Award in 2006, the Alexander von Humboldt Professorship in 2014, and the Vodafone Innovation Prize in 2015. Giuseppe Caire is a Fellow of IEEE since 2005. He has served in the Board of Governors of the IEEE Information Theory Society from 2004 to 2007, and as officer from 2008 to 2013. He was President of the IEEE Information Theory Society in 2011. His main research interests are in the field of communications theory, information theory, channel and source coding with particular focus on wireless communications.

15:00 – 15:30 Gerhard Kramer, Technical University of Munich, Germany
Capacity of Cloud-RAN Downlink Channels

Abstract: The downlink of a cloud radio access network (C-RAN) architecture can be modeled as a diamond network. The baseband unit (BBU) is connected to remote radio heads (RRHs) via fiber links that are modeled as rate-limited bit pipes. Bounds on the rates for reliable communication are evaluated for single-antenna RRHs. The bounds are also evaluated for an abstract model: a noise-free binary adder channel (BAC). The capacity of the BAC is established for all ranges of bit-pipe capacities, which seems to yield a new combinatorial result on sum sets.
Bio: Gerhard Kramer is Alexander von Humboldt Professor at the Technical University of Munich (TUM). His research interests are primarily in information theory and communications theory, with applications to wireless, copper, and optical fiber networks. He is an IEEE Fellow and served as the 2013 President of the IEEE Information Theory Society.

15:30 – 16:00 Neri Merhav, Technion, Israel
Lower Bounds on Parameter Modulation–Estimation Under Bandwidth Constraints

Abstract: We consider the problem of modulating a parameter value onto a band-limited signal to be transmitted over a continuous-time, additive white Gaussian noise (AWGN) channel, and estimating this parameter at the receiver. The performance is measured by the mean power-α error (MPαE), namely, the worst-case α-th order moment of the absolute estimation error. The fastest exponential decay rate of the MPαE as a function of the transmission time, is investigated. Two different mechanisms are developed, for transforming upper (converse) bounds on the MPαE exponents of the unlimited bandwidth case, to corresponding bounds for the band-limited case. The bounds are computed for typical values of the error moment and the signal-to-noise ratio (SNR), and the SNR asymptotics of the different bounds are analyzed. The new bounds are compared to known converse and achievability bounds, which were derived from channel coding considerations.

• Joint work with Nir Weinberger

Bio: Neri Merhav was born in Haifa, Israel, on March 16, 1957. He received the B.Sc., M.Sc., and D.Sc. degrees from the Technion, Israel Institute of Technology, in 1982, 1985, and 1988, respectively, all in electrical engineering.

From 1988 to 1990 he was with AT&T Bell Laboratories, Murray Hill, NJ, USA. Since 1990 he has been with the Electrical Engineering Department of the Technion, where he is now the Irving Shepard Professor. During 1994--2000 he was also serving as a consultant to the Hewlett--Packard Laboratories -- Israel (HPL-I). His research interests include information theory, statistical communications, and statistical signal processing. He is especially interested in the areas of lossless/lossy source coding and prediction/filtering, relationships between information theory and statistics, detection, estimation, as well as in the area of Shannon Theory, including topics in joint source–channel coding, source/channel simulation, and coding with side information with applications to information hiding and watermarking systems. Another recent research interest concerns the relationships between Information Theory and statistical physics.

Dr. Merhav was a co-recipient of the 1993 Paper Award of the IEEE Information Theory Society and he is a Fellow of the IEEE since 1999. He also received the 1994 American Technion Society Award for Academic Excellence and the 2002 Technion Henry Taub Prize for Excellence in Research. From 1996 until 1999 he served as an Associate Editor for Source Coding to the IEEE TRANSACTIONS ON INFORMATION THEORY. He also served as a co–chairman of the Program Committee of the 2001 IEEE International Symposium on Information Theory. He is currently on the Editorial Board of FOUNDATIONS AND TRENDS IN COMMUNICATIONS AND INFORMATION THEORY.

16:00 – 16:30 Joseph Boutros, Texas A&M University, Qatar
Construction-A Lattices with Number Fields

Abstract: Lattices are discrete sets of points in real or complex Euclidean spaces with a group structure. Lattices are an important tool for information processing in many areas such as cryptography, vector quantization, and channel coding. The recent success of building high-dimensional fast-decodable lattices from non-binary codes motivated us to investigate methods for building full-diversity lattices via Construction A (Leech & Sloane 1971). On the Gaussian channel, in absence of fading, low-density lattices from Construction A (LDA) can achieve Shannon capacity under lattice decoding (di Pietro 2014).

Generalized low-density (GLD) lattices and LDA lattices are built from an error-correcting code over a finite field which is embedded and shifted in all directions in the Euclidean space to create a discrete group structure. Under iterative decoding, the finite field size is selected large enough to guarantee that the LDA/GLD lattice is not perturbed by its integer cubic sub-lattice. In presence of fading, cubic integer lattices are replaced by lattices from number fields. The LDA/GLD lattice for diversity forms a partition chain starting with the lattice from
the ring of integers in the number field and ending with a lattice from an ideal in the ring of integers. The lattice diversity order is directly related to the signature of the number field. For fields of degree two and above, we show how to select the number field and the ideal for Construction A in order to make lattices that are good for both Gaussian and fading channels. This is a joint work with Dr Fanny Jardel from Nokia Bell-Labs at Stuttgart.

Bio: Joseph Jean Boutros received the M.S. degree in electrical engineering in 1992 and the Ph.D. degree in 1996, both from Ecole Nationale Superieure des Telecommunications (ENST, Telecom ParisTech), Paris, France. From 1996 to 2006, he was with the Communications and Electronics Department at ENST as an Associate Professor. Also, Dr Boutros was a member of the research unit UMR-5141 of the French National Scientific Research Center (CNRS) in Paris. In July 2007, Doctor Boutros joined Texas A&M University at Qatar as a full Professor in the electrical engineering program. Doctor Boutros teaches courses in signal processing, communication theory, information theory, and wireless communications. His mathematical approach for teaching communication theory is combined with a strong practical computing component. Doctor Boutros has been a scientific consultant for Alcatel Space, Philips Research, and Motorola Semiconductors, and member of the Digital Signal Processing team at Juniper Networks Cable. His fields of research are codes on graphs, lattice sphere packings, iterative decoding, joint source-channel coding, compressive sensing, space-time coding, physical-layer security, and physical-layer network coding. Doctor Boutros’ citations score is more than 5000 according to Google Scholar. His research is mainly performed under grants and tight collaboration with private companies and public institutions such as Mitsubishi Electric Europe, Ooredoo, and the Qatar National Research Fund. Dr Boutros is a senior member of the IEEE society. He is active in technical and organization committees of numerous IEEE events, such as the International Symposium on Information Theory (ISIT), the Information Theory Workshop (ITW), the International Symposium on Turbo Codes and related topics, etc. Doctor Boutros is co-inventor of 13 industrial patents including algorithms and techniques in channel coding and digital communications.

Session 4
17:00 – 18:00

17:00 – 17:30 Emre Telatar, EPFL, Switzerland
Approximation of Output Statistics
Abstract and bio have not been received yet

17:30 – 18:00 Ioannis Kontoyiannis, Department of Informatics, Athens University of Economics & Business, Greece
Context-Tree Weighting for Bayesian Inference

Abstract: We consider the problem of hierarchical Bayesian inference and model selection, for discrete time series. We define a new class of prior distributions (on models and on parameters) and consider a number of statistical problems for such data, including online prediction, estimation, classification, anomaly detection, and so on.
As with any Bayesian procedure, the main goal is to determine the associated posterior distributions. We observe that the Context Tree Weighting (CTW) and related algorithms -- initially developed in the context of universal data compression by Willems, Shtarkov, Tjalkens and their collaborators since the early 1990s -- can be generalized and applied in this setting, to give exact solutions to some difficult problems. We describe how the resulting methods can be extended in several directions, both algorithmically and theoretically, to provide effective tools for statistical inference in general settings. Our results are illustrated by extensive computational experiments on both synthetic and real data.

Bio: Ioannis Kontoyiannis was born in Athens, Greece, in 1972. He received the B.Sc. degree in mathematics in 1992 from Imperial College (University of London), U.K., and in 1993 he obtained a distinction in Part III of the Cambridge University Pure Mathematics Tripos. He received the M.S. degree in statistics and the Ph.D. degree in electrical engineering, both from Stanford University, Stanford, CA, in 1997 and 1998, respectively. Between 1998 and 2001 he was an Assistant Professor with the Department of Statistics, Purdue University,
West Lafayette, IN (and also, by courtesy, with the Department of Mathematics, and the School of Electrical and Computer Engineering). From 2000 until 2005 he was an Assistant, then Associate Professor, with the Division of Applied Mathematics and with the Department of Computer Science, Brown University, Providence, RI.

Since March 2005, he has been with the Department of Informatics, Athens University of Economics and Business, where he is currently a Professor. Dr. Kontoyiannis was awarded the Manning endowed Assistant Professorship in 2002, and was awarded an honorary Master of Arts degree Ad Eundem, in 2005, both by Brown University. In 2004, he was awarded a Sloan Foundation Research Fellowship. He has served two terms as an Associate Editor for the IEEE Transactions on Information Theory, and he is a Fellow of the IEEE. His research interests include data compression, applied probability, information theory, statistics, simulation, and mathematical biology.
Welcome note
8:30 – 8:40
Israel Cohen, Technion, and Sharon Gannot, Bar Ilan University

Session 1
8:40 – 10:30

Keynote talk: Walter Kellermann (8:40-9:40)
“Current Challenges in Acoustic Signal Processing for Natural Human/Machine Interfaces”

Walter Kellermann received the Dipl.-Ing. (univ.) degree in electrical engineering from the University of Erlangen-Nuremberg, in 1983, and the Dr.-Ing. degree from the Technical University Darmstadt, Germany, in 1988. He is a Professor for communications at the University of Erlangen-Nuremberg, Germany, since 1999. From 1989 to 1990, he was a postdoctoral Member of Technical Staff at AT&T Bell Laboratories, Murray Hill, NJ. In 1990, he joined Philips Kommunikations Industrie, Nuremberg, Germany, to work on hands-free communication in cars. From 1993 to 1999, he was a Professor at the Fachhochschule Regensburg, where he also became Director of the Institute of Applied Research in 1997. In 1999, he cofounded DSP Solutions, a consulting firm in digital signal processing, and he joined the University Erlangen-Nuremberg as a Professor and Head of the Audio Research Laboratory. He authored or coauthored 16 book chapters, 250+ refereed papers in journals and conference proceedings, as well as 50+ patents, and is a co-recipient of nine best paper awards. His current research interests include speech signal processing, array signal processing, adaptive filtering, and its applications to acoustic human machine interfaces. Dr. Kellermann served as an Associate Editor and Guest Editor to various journals, including the IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING from 2000 to 2004, the IEEE Signal Processing Magazine in 2015, and presently serves as Associate Editor to the EURASIP Journal on Applied Signal Processing. He was the General Chair of seven mostly IEEE-sponsored workshops and conferences. He served as a Distinguished Lecturer of the IEEE Signal Processing Society (SPS) from 2007 to 2008. He was the Chair of the IEEE SPS Technical Committee for Audio and Acoustic Signal Processing from 2008 to 2010, a Member of the IEEE James L. Flanagan Award Committee from 2011 to 2014, a Member of the SPS Board of Governors (2013–2015), and is currently Vice President Technical Directions of the IEEE Signal Processing Society (2016–2018). He was awarded the Julius von Haast Fellowship by the Royal Society of New Zealand in 2012 and the Group Technical Achievement Award of the European Association for Signal Processing (EURASIP) in 2015. He is an IEEE Fellow.
Invited talk: **Emanuël A.P. Habets** (9:40-10:30)
“Sound Acquisition using Parametric Sound Field Models: Classical and Bayesian Approaches”

Emanuël A.P. Habets received the B.Sc. degree in electrical engineering from the Hogeschool Limburg, The Netherlands, in 1999, and the M.Sc. and Ph.D. degrees in electrical engineering from the Technische Universiteit Eindhoven (TU/e), The Netherlands, in 2002 and 2007, respectively. From March 2007 until February 2009, he was a postdoctoral fellow at the Technion - Israel Institute of Technology and at the Bar-Ilan University, Israel. In 2009, he was awarded a Marie Curie Intra-European Fellowship for Career Development. From February 2009 until November 2010, he was a Member of the Research Staff in the Communication and Signal Processing Group at Imperial College London, United Kingdom. In November 2010, he joined the International Audio Laboratories Erlangen (a joint institution of Fraunhofer IIS and the University of Erlangen-Nuremberg, Germany) as an Associate Professor for Perception-based Spatial Audio Signal Processing at the University of Erlangen-Nuremberg and Chief Scientist for Spatial Audio Processing at Fraunhofer IIS. Since 2013 he is also Head of the Spatial Audio Research Group at Fraunhofer IIS. His research activities center around audio and acoustic signal processing, and include spatial audio signal processing, spatial sound recording and reproduction, speech enhancement (deregverberation, noise reduction, echo reduction), and sound localization and tracking. Dr. Habets was a member of the organization committee of the 2005 International Workshop on Acoustic Echo and Noise Control (IWAENC) in Eindhoven, The Netherlands, a general co-chair of the 2013 International Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) in New Paltz, New York, and general co-chair of the 2014 International Conference on Spatial Audio (ICSA) in Erlangen, Germany. He was a member of the IEEE Signal Processing Society Standing Committee on Industry Digital Signal Processing Technology (2013-2015), and a Guest Editor of the IEEE Journal of Selected Topics in Signal Processing and the EURASIP Journal on Advances in Signal Processing. He is the recipient, with S. Gannot and I. Cohen, of the 2014 IEEE Signal Processing Letters Best Paper Award. He is a Senior Member of the IEEE, a member of the Audio Engineering Society, a member of the IEEE Signal Processing Society Technical Committee on Audio and Acoustic Signal Processing (2011-2016), vice-chair of the EURASIP Special Area Team on Acoustic, Sound and Music Signal Processing, an Associate Editor of the IEEE Signal Processing Letters, and Editor in Chief of the EURASIP Journal on Audio, Speech, and Music Processing.

Session 2

11:00 – 12:50

Keynote talk: **Jingdong Chen** (11:00-12:00)
“Differential and Superdirective Beamforming with Small Linear and Circular Microphone Arrays”

Jingdong Chen received the Ph.D. degree in pattern recognition and intelligence control from the Chinese Academy of Sciences, Beijing, China, in 1998. From 1998 to 1999, he was with the ATR Interpreting Telecommunications Research Laboratories, Kyoto, Japan, where he conducted research on speech synthesis, speech analysis, as well as objective measurements for evaluating speech synthesis. He then joined the Griffith University, Brisbane, Australia, where he was engaged in research on robust speech recognition, and signal processing. From 2000 to 2001, he worked at the ATR Spoken Language Translation Research Laboratories on robust speech recognition and speech enhancement. From 2001 to 2009, he was a Member of Technical Staff at Bell Laboratories, Murray Hill, NJ, USA, working on acoustic signal processing for telecommunications. He subsequently joined WeVoice Inc., New Jersey, serving as the Chief Scientist. He is currently a Professor at the Northwestern Polytechnical University, Xi’an, China.
His research interests include acoustic signal processing, adaptive signal processing, speech enhancement, adaptive noise/echo control, microphone array signal processing, signal separation, and speech communication. Dr. Chen served as an Associate Editor of the IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING from 2008 to 2014 and as a Technical Committee (TC) member of the IEEE Signal Processing Society (SPS) TC on Audio and Electroacoustics from 2007 to 2009. He is currently a Member of the IEEE SPS TC on Audio and Acoustic Signal Processing, and a Member of the editorial advisory board of the Open Signal Processing Journal. He was the Technical Program Chair of the IEEE TENCON 2013, a Technical Program CoChair of the IEEE WASPAA 2009, the IEEE ChinaSIP 2014, the IEEE ICSPCC 2014, and the IEEE ICSPCC 2015, and helped organize many other conferences. He co-authored the books Design of Circular Differential Microphone Arrays (Springer, 2015), Study and Design of Differential Microphone Arrays (Springer, 2013), Speech Enhancement in the STFT Domain (Springer, 2011), Optimal Time-Domain Noise Reduction Filters: A Theoretical Study (Springer, 2011), Speech Enhancement in the Karhunen-Loeve Expansion Domain (Morgan&Claypool, 2011), Noise Reduction in Speech Processing (Springer, 2009), Microphone Array Signal Processing (Springer, 2008), and Acoustic MIMO Signal Processing (Springer, 2006). Dr. Chen received the 2008 Best Paper Award from the IEEE Signal Processing Society (with Benesty, Huang, and Doclo), the Best Paper Award from the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics in 2011 (with Benesty), the Bell Labs Role Model Teamwork Award twice, respectively, in 2009 and 2007, the NASA Tech Brief Award twice, respectively, in 2010 and 2009, the Young Author Best Paper Award from the 5th National Conference on Man-Machine Speech Communications in 1998. He also received the Japan Trust International Research Grant from the Japan Key Technology Center in 1998 and the “Distinguished Young Scientists Fund” from the National Natural Science Foundation of China in 2014.

Invited talk: Simon Doclo (12:00-12:50)
“Incorporating sparsity into multi-microphone speech dereverberation techniques”

Simon Doclo received the M.Sc. degree in electrical engineering and the Ph.D. degree in applied sciences from the Katholieke Universiteit Leuven, Belgium, in 1997 and 2003. From 2003 to 2007 he was a Postdoctoral Fellow with the Research Foundation – Flanders at the Electrical Engineering Department (Katholieke Universiteit Leuven) and the Adaptive Systems Laboratory (McMaster University, Canada). From 2007 to 2009 he was a Principal Scientist with NXP Semiconductors at the Sound and Acoustics Group in Leuven, Belgium. Since 2009 he is the head of the Signal Processing Group at the University of Oldenburg, Germany, and scientific advisor for the project group Hearing, Speech and Audio Technology of the Fraunhofer Institute for Digital Media Technology. His research activities center around signal processing for acoustical applications, more specifically microphone array processing, active noise control, acoustic sensor networks and hearing aid processing. Prof. Doclo received the Master Thesis Award of the Royal Flemish Society of Engineers in 1997 (with Erik De Clippel), the Best Student Paper Award at the International Workshop on Acoustic Echo and Noise Control in 2001, the EURASIP Signal Processing Best Paper Award in 2003 (with Marc Moonen) and the IEEE Signal Processing Society 2008 Best Paper Award (with Jingdong Chen, Jacob Benesty, Arden Huang). He was secretary of the IEEE Benelux Signal Processing Chapter (1998-2002), member of the IEEE Signal Processing Society Technical Committee on Audio and Acoustic Signal Processing (2008-2013), and Technical Program Chair for the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA) in 2013. Prof. Doclo has served as guest editor for several special issues (IEEE Signal Processing Magazine, Elsevier Signal Processing) and is associate editor for IEEE/ACM Transactions on Audio, Speech and Language Processing and EURASIP Journal on Advances in Signal Processing.

Session 3
Session 4

16:10 – 18:00

Keynote talk: **Paris Smaragdis** (16:10-17:10)
“Machine Learning Approaches for Speech Enhancement”

Paris Smaragdis is an associate professor at the CS and ECE depts. at the University of Illinois at Urbana-Champaign. His primary research interests revolve around making machines that can listen. He has been very active in the fields of signal processing, machine learning and statistics as they relate to artificial perception, and in particular computational audition. The bulk of his work on audio is on source separation, and various machine learning approaches to traditional signal processing problems. He is a descendant of a long music lineage dating to the early
1600s. His Erdös number is 4. Prof. Smaragdis has been associated with several research labs. He completed his masters, Ph.D. and a postdoc at the Machine Listening Group at the MIT Media Lab under the supervision of Barry Vercoe. He works with Adobe Systems’ Advanced Technology Labs, used to be at MERL, and have spent some time at Interval Research and Starlab. He was also a visiting scientist at MIT's McGovern Institute for Brain Research. In 2006, he was selected by MIT’s Technology Review as one of the year’s top young technology innovators. Prof. Smaragdis is an IEEE fellow.

Invited talk: Richard C. Hendriks (17:10-18:00)
“Optimizing Speech Intelligibility Using a Simple Model of Communication”

Richard C. Hendriks was born in Schiedam, The Netherlands. He received the B.Sc., M.Sc. (cum laude) and Ph.D. (cum laude) degrees in electrical engineering from the Delft University of Technology, Delft, The Netherlands, in 2001, 2003 and 2008, respectively. Currently, he is an assistant professor in the multimedia signal processing group of the faculty of Electrical Engineering, Mathematics and Computer Science at Delft University of Technology. In March 2010 he received a VENI grant for his proposal “Intelligibility Enhancement for Speech Communication Systems”. His main research interests are digital speech and audio processing, including single- and multi-microphone acoustical noise reduction, speech enhancement and intelligibility of speech in noise.